PROGRAMMERS MANUAL

SC-3000

SEGA

Programming
Manual

By B. BROWN

Edited and produced for HI-TECH Programming Ltd
by NOMAC Publishing Ltd,
6 Como st,Takapuna,Auckland,NEW ZEALAND.

© NOMAC PUBLISHING LTD 1984

CONTENTS

INTRODUCTION, A description of the basic components of the SEGA computer.

Chaprer 1. HARDWARE: A description of the chips inside the SEGA
and their functions.
SOFTWARE: A description of the RM, Basic keywords,
program format, reserved ram areas.

(hapter 2. VIDEO: VDP. The Visual Display Processor.
How to program it, and what it
can do.
ARCHTTECHURE: An outline of the internal registers.
REGISTER UPDATING: Updating a VDP register. ie color control

VRAM: Writing and reading using machine code.

SPRTTES: Movement and collision detection.

TABLES: A description of the Name, Pattern and Attribute
tables.

Other DISPLAY MODES: A brief demonstartion of another graphics
screen not available from Basic.

Chapter 3. SOUND The Sound Generator chip.
Frequency and attenuation control of each
register.
The Noise register.
Creating music.

Chapter 4. CASSETTE The Cassette Routines in ROM
Loading the Filename
Loading the program
Saving the Filename
Saving the Program
Auto load and execute Basic programs

Chapter 5. JOYSTICKS & KEYBOARD
Connections
Using machine code.

Chapter 6. INTERESTING BITS AND PIHCES.

APPENDIX: Basic Programs and a PATTERN EDITOR

INTRODUCTION

The SHGA SC3000 home computer is a late addition to the computer

scene. It has good graphics and sound, with the promise of greater
things to come in the near future with the release of disc attatch—
ments. This book seeks to add to the growing knowledge of the internal
workdngs of theSHGA, and in so doing, help others in their search for
better and quicker ways of programming.

BASIC OPERATION PRINCIPLES

The SEGA computer can be represented as three main components,

L2222 E L LT 1 L X X LT] ’ 3 3% % 3 3 3 % % 3% %
* L J TS U * M [J——— * »*
* € * ADDRESS RUS *» e bl * *
* P M e e e ——— » m [Teepemp—] p *
» »* ‘ »* o * * v *
»*] LT T T p—— » r [J—— » t *
* N * DATA RUS * v * * 0 »
* 1 B e e * E Ju————— * oy *
* T * ’ L2 22 s 2 XL 2T * 1 *
» P et e e et e e | R p »
* * CONTROL ERUS * 1) *
* F e e oo e s i s 1 s e b it i b s e s e i o s st o e e F o
33 A A Fe e I I K% : LT E TS

CENTRAL PROCESSING UNIT (CPU)

This device commmicates with all the devices comected to it, and
transfers information between the devices as required. (This may
involve the manipulation of the data internally within the CPU.)

MEMORY

There are two types of memory used, Read Only and Random Access
memory (ROM and RAM). The ROM contains the BASIC language (begin—
ners all-purpose symbolic instruction code), and the necessary

- programs which enable the CPU to commnicate with all the other
devices. The contents of the RIM are retained when the power is
turned off. RM can only be Read by the CPU, and is a sort of
text book from which the CPU gets the necessary instructions
informing it of what to do. RAM is used for temporary program
storage, and its contents disappear when the power is turned off.
This explains why you must transfer your program to cassette tape.
RAM can be thought of as a blackboard. Information can be both
written onto it and erased.

INPUT/OUTPUT DEVICES

These devices allow the user to communicate with the CPU and
allows feedback from the CPU to the user. An example of an
input/output device is the keyboard and Video Display.

OOMVUNICATTION BETWEEN DEVICES

Fach device connected to the CPU is given a unique box number
(ADDRESS). The CPU can communicate with the specific device by
placing its box number (ADDRESS) on the ADDRESS BUS. A bus is

a common highway which allows communication between devices.

Having placed the right address on the bus, (ie selected the

correct box number), the CPU can then read from or write to the
selected device. The CPU transfers information between devices in
BINARY format. The smllest element in binary is a BIT. A bit

is represented as having one of two possible states, N or OFF.

The ON state is normally designated '1' whilst the OFF state

is designated a '0'. The CPU however, can work with eight bits

at a time. This group of eight bits is called a BYIE. A byte

can be thought of as eight buckets, where each bucket could be

full or empty. It thus follows that the maximum number of
combinations possible with eight bits is 256. Fach address

(box) is capable of storing eight bits, thus any box can have as

its contents a value of between O and 255. The CPU moves the

bytes around via the DATA BUS. In this case the DATA BUS is
bidirectional, ie information can travel from the CPU to a

device or from a device to the CPU. Fach device is connected to the
address bus which is used by the CPU to tell the device that the CPU
is talking to it. The address bus is sixteen bits wide, thus the CPU
can access any one of 65536 possible locations (or boxes which hold
8 bits each). To inform the devices as to which way the information
is travelling on the data bus, a OONIROL BUS is used. This control
bus informs the device if it should expect to receive data (ie a write) -
or whether it should present data so that the CPU can read it (ie a
read). The CPU has temporary storage boxes inside it called
REGISTERS. When the CPU wishes to transfer information from one
address to another, the CPU carries out the following sequences,

1) Places the correct address (box number) on the address bus
2) Reads the contents of the selected address via the data bus
3) Transfers the information to one of its registers

4) Places the destination address on the address bus

5) Transfers the contents of its register onto the data bus

6) Informs the device at that address to get the new contents
for that address, which is appearing on the data bus

INPUT/OUTPUT PORTS

The CPU can have up to 256 seperate ports. These are selected
by an eight bit value on the address bus, and the use of a
special signal on the control bus. This special signal is act-
ivated when you use the command QUT or INP in basic. These
ports can each hold an eight bit value. Not all of the ports are
used, so refer to chapter one and the section dealing with the
memory mapping arrangements for further information,

This covers the sequence of operations in a relatively simple
manner, and has served to introduce the reader to some of the more
technical terms which will be used shortly.

BINARY & DECIMAL

A byte of eight bits has already been introduced. These eight
bits can be either on or off, so a byte in binary could be re-
presented as follows,

B7 B6 B5 B4 B3 B2 Bl RO
11101011

Bit seven is the bit which has the greatest value, while bit zero
has the least value. Bit seven is thus called the MOST SIGNIF-
ICANT BIT (MSB) while bit zero is called the LEAST SIGNIFICANT BIT
(ISB). In terms of the decimal value of each bit, the following
example should help,

Decimal Value 128 64 32 16 8 4 2 1
Binary digit B7 B6 BS B4 B3 B2 Bl BO

thus a byte of 11000000 will have a decimal value of 192, because
bit 7 and bit 6 are both 'l', so the decimal result is 128+64.
Where a '1' occurs, the decimal value is added, while all 'O's
are ignored.

HEXADECIMAL NOTATION

Binary numbers of eight bits are sometimes tedious to write down, so
a method was devised in which the binary numbers are represented in
another form. This form is known as HEXTDECIMAL (hex). It has a
number base of 16 digits (decimal has 10, binary has two). The
equilavent decimal, binary, and hex values are listed below,

BINARY DECIMAL HEXTDECIMAL

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010 .10
1011 11
1100 12
1101 13
1110 14
1111 15

OCo~NOTULPwN—O

o Rwie Reol_JiNole N Ne) N, BN EVE SN i o)

As shown, hex ranges from0'F. When the hex number is larger, ie
16 in decimal then the hex number becomes 10. This is exactly the
same as in decimal when you go from 9 to 10. Looking at a byte
(eight bits), the four least significant bits are called the LOWER
NIBBLE, while the four most significant bits are called the

UPPER NIBBLE. (A nibble is 4 bits).

Upper Nibble Lower Nibble
B7 B6 BS5 B4 B3 B2 Bl BO
1 1 0 1 O 1 1 1 Binary value of each bit

To represent this in hex requires two hex digits, as each hex digit
can only represent four bits. The upper and lower nibbles are con-
verted to hex digits, with the resultant hex digits being written with
the most significant one first. In the example above,

1101 in binary is '13' decimal so thats 'D' in hexidecimal
0111 in binary is ' 7' decimal so thats '7' in hexidecimal

so the corresponding hex digits which represent the byte 11010111 is
'D7'. Hexidecimal digits are prefixed with &1 in SIGA basic, and the
hexidecimal value of any decimal number can be found by using HEXS.

CHAPTER 1

The SHGA computer has two main sections, HARDWARE and SOFIWARE,
Hardware refers to the physical reality or components, whilst
software refers to the programs which control the hardware.

HARDWARE: The hardware can be split into several main sections.

1) CENTRAL PROCESSOR: This is a Z80 8bit processor. It has a
maxdimum address range of 65535 bytes. The first 3K is occupied
by the Basic RIM or Games ROMs, while the other 32 is for RAM.

2) VIDED DISPLAY: The Video Chip is a Texas Instruments TMM9929A.
This provides up to four display modes, 32 sprites, 20 millisecond
interrupt generator, and 16Kbytes of dedicated RAM. The Video Ram
has no connection to the central processor, and is updated by
writing to the VDP. The VDP is port mapped at &HBE and &HBF.

The internal structure of the VDP and its programming is detailed
in chapter 2,

3) SOUND GENERATOR: This is an SN76487AN chip. It has three sound
channels and a noise generator. Fach channel has its own program
mable attenuator for controlling the output volume. It is ICA4 on the
main PC board, and its programming is discussed in chapter 3.

4) SYSTEM RAM: This is a ZKbyte chip 8212 (IC3). It is memory mapped
at address's 810000 ' 8HC7FF. It is used for stack and data storage
by plug—in cartridges.

5) INPUT/QUTPUT DEVICES: These include the keyboard, printer, joy—
sticks and cassette. The devices are connected to the computer
system via a programmable interface chip, a 8255 PIA (IC5). This
PIA has threeports and a control register. The information sent
to the control register determines whether the ports will be read
or write or both.

The ports are labelled as follows;
PORT A located at address &HDC Keyboard Matrix
PORT B located at address &HDD Keyboard Matrix
PORT C located at address &HDE Keyboard Control
PRT D located at address &HDF Control Register
The actual programming of this PTA will be covered in chapter 5.

6) ADDRESS DEOODER: This is achieved by IC2. A logic level of zero on
the appropiate CS lead will enable that particular chip. Only one
device may be enabled at any time. The CPU can cnly talk/listen to
one device at a time, so it is the function of the address decoder to
prevent move than one device interacting with the CPU at any moment. .

INTERRUPIS: 'The SHGA computer operates with two interrupts. An inter-—
rupt is a halting of the process being carried out by the processor, a
jump is then made to a specific program in memory, and when this program
ends the original program is resumed.

NON-MASKABLE INTERRUPI' (NMI): The interrupt causes the processor to jump
to address 8HOO66. This occurs whenever the RESET button is pushed. A
check is made of location &H97E2 which stores whether a program resides
in memory, then the start—up routines are executed. The NMI cannot be

disabled.

INTERRUPT (INT): This is used for TIME$ and is generated by the VDP chip
every 50 milli-seconds. It can be disabled by a DI (disable interrupts)
comand using machine—code. It must also be noted that the SEGA computer
also uses Interrupt Mode 1, which forces INT to address &H0038.

THE SHGA MEMORY: The SEGA uses a Z80 microprocessor, thus
has a maximum address range of 64K.

0000 eeesssasssse A1l Basic programming packs
g * occupy 0000'7FFF, and comprise
* * not only ROM but also RAM.
* or * The XK of system RAM is located
* GAME * at CO00'C7FF. There is NO onboard
* CARTRIDGE¥ RM! The Video RAM, keyboard,

ITY wessesaseatt sound generator, and printer
* RAM * are all bank-selected using
* ARFA % 1/0 ports. Game Cartridges
* * use the system RAM chip located
* * at CO00'C7FF which is the only
* * memory which is on-board. RAM is

FEFF secssasaeesst glways located in 7FFF'FFEF,

11

INPUT/OUTPUT PORTS:

HEHEEEEEEE

7F %* SOUND * SN74689AN Sound Generator.
SBHEEEEEE

IC *PORT A * Keyboard Matrix.
SEEHEREEEEE

ID *PORT B * Keyboard Matrix
HEHEEEHEEE

DE ¥ PORT C * Keyboard Control.

DF % CONTROL * PIA Intel 8255.
FEHEEREEE

BE * VDP * TMVO929A VDG, (+16K VRAM)
SHHHSEEEEE

BF *VDP ¥ Other part of VIG.
SEEEEEREEEE:

FOUR COLOR PRINTER/PLOTTER: The printer is run by a dedicated 8bit
micro—computer, type 6805. This CPU has the ROM built inside the actual
chip, and thus, if it goes faulty, it must be thrown away. The mech—
anism is standard, and is used in a wide range of printers, eg, Sharp,
Commodore, Casio, etc. Some parts are thus interchangeable.

SOFTWARE:

BASIC CARTRIDGES: The Basic cartridges (IVIITA/B) contain a 3K

RM chip and also RAM chips. The Basic operating system must use some
of the RAM space for the storage of variables etc, (ie reserved Ram
areas), thus this explains why only 26620 bytes are available to the
user when using the level ITIB cartridge.

THE LEVELITIB CARTRIDGE: This contains a 32K ROM, 4 16Kx4bit RAM chips,
and a few support chips.

GAMES: The games cartridges usually contain a single ROM chip. The
on-board system RAM located at &H0000 is used for temporary storage
of variables and the system stack. Some cartridges do use two RIM
chips.

SHGA BASIC ROM: It occupies the first 32 of memory space. This
leaves only 32X left for RAM. The Basic ROM contains the Basic
Language, and allows the user to program the computer using english
type statements. The necessary routines to manage the keyboard, printer
sound generator etc are all part of the Basic language. These routines
may be called independently so that a programmer can use them as part
of his own program. This is achieved by use of the CALL statement from
basic.

RESERVED RAM AREAS: &H8000 ' &HI7FF

In order for Basic to convert data from one form to another, and to
execute commands or run programs, it must reserve storage space for
this purpose. The reserved Ram is also used to store pointers which
hold the address or location of the program in memory, the data being
used, variables and their values, what line number is being executed,
the color and cursor information, the character and sprite patterns,
etc. Table XXX1 lists some relevant reserved locations.

BASTC PROGRAM POINTERS: Whenever a Basic program is typed in or

RUN, the Basic language in ROM must know where to locate the program,
whereabouts the program ends, where the variables are and what their
names are, etc. Basic thus stores all this information in a Reserved
RAM area, reserved because if this information is lost or destroyed,
then the program will fail to execute properly, if at all. Each location
in the Reserved RAM area holds a specific value, eg, memory locations
&H8160 and 8HB16] store the address of the start of a Basic program.
To determine the start address in hexadecimal, type the following

PRINT HEX$(PEFK(&H8161)) ;HEX$(PEEK (8H8160))

The other pointers associated with the Basic program are listed in
Table XXX1. Manipulation of these pointers can result in Merge
programs, the ability to save and load machine—code blocks of memory
or string storage areas (ie data) etc. For an example of this, refer
to the auto-load routine in chapter 4.

BASIC LINE STORAGE FORMAT: When a line of Basic program is typed into
the computer, it is stored in an area of designated free RAM. The way
that each line is stored in memory is as follows,

13

Byte 1 Number of Bytes in the Line

Byte 2 Least significant Byte of Line number
Byte 3 Most significant Byte of the Line number
Byte 4 Zero

Byte 5 Zero

Byte 6 "Byte N-1 Basic line contents

Byte N Alvays a carriage return &HOD

The end of each Basic line is terminated by a carriage return (CR).
If this occured before it should, the Basic language would erase the
rest of the line contents. Occasions where this might happen are
explained in the section on String Packing.

TOKENISED BASIC KEYWORDS: Basic keywords are stored in memory as a
single hex byte. This saves memory space. When programs are listed or
printed, the keywords are expanded into their full meaning. Table XXX2
has a listing of the hex bytes and their equivalent Basic keyword.
When counting the number of bytes in a line, keywords are counted as a
single byte only.

SIRING PACKING: String packing refers to the imbedding within REM
statements of a machine-code routine. Because Sega Basic always
starts at the same address in memory (&H9800) then this becomes
relatively easy. It must be remembered that the machine—code routine
cannot have®HOD or 13 decimal in it, else Basic will think that the
line has actually finished, and the remaining machine—code will be
lost. Refer to the program listed in Table XX21 for an example of this.
Once the program has been RN, press break and list line 5. The
machine—code data statements and poke routine can then be deleted,

and the code can be saved as part of a normal program.

(OLCR BYTES: lLocations &H9339 and &H933A hold the color information
for the text and graphics screens respectively. The byte is split

up into two halves, the first half controls the writing color, and

the other half the background color. Refer to Table XXX7 for the
values which determine each color. If a Red text on Yellow
background is required in the text mode, POKE &H9339,8H8B (8=Red,
B=Yellow).

INKEY$ STORAGE ARFAS: Iocations 819460 onwards store the value
received from the keyboard during an INKEY$ statement. Table

XXX4 lists the appropiate key, value and location for each key

press. Note that each key pressed returns a different value, and

that several locations are used to store the returned values.

USING INKEY$ WITH HYBRTD PROGRAMS: A hybrid program is a mixture

of machine code and Pasic. This technique allows fast speed and

ease of programming. A typical layout follows,

5 REM machine—code program poked into here
10 A$=INKEY$: CALL &HO808 : GOIO 10

20 REM 8HIR(8 is start address of mcode

30 REM and tests key value returned in

40 RPM locations 8H9460-, then moves the
50 REM ship left, right, fires etc

ERRORS MESSAGES: The Basic Error messages are stored at 8H73E8 '
&H7676. The routine at &8173B7 is used to determine the actual error,
and then print it to the screen. The code of the error is passed to
the routine, which searches a table for the error code, then loads the
text message that follows the error code. The following program lists
the various errors and their appropiate code.

5 R MmvmM\mivymmmrMmMMMMMMM
10 SCREEN 1,1: CLS

20 FOR X=RH9808 TO &HOECE

30 READ A: POKE X,A: NEXT

40 FOR Y=0 TO 70: POKE &H9809,Y

50 PRINT "'Y=";Y;" ":: CALL &HO808
60 PRINT: NEXT Y

70 DATA 8H3E,O0,&H4F,8HCD,8HB7,8H73
80 DATA &HCO

POWER-UP DIAGNOSTICS ROUTINES: The Sega computer, on power—up, carries
out a self-check on the various internal compnents. Should a failure
occur, a jump is made to the fault indication routine, and an audible
indication is given to the user. These indications are,

Single Beep = RAM Failure &H6809
Double Beep = R(M Failure &H680D
Triple Beep = VRAM Failure &H6811

15

16

ROM ROUTINES: These routines are used by the cpu when it
communicates with the devices connected to it. These routines
can be called independently by the programmer, using a CALL:
statement. Table XXX3 lists some important ROM routines. -

Table XXX1. RESFRVED RAM ARFAS.

Hex Address
8160/8161
8162/8163
8164/8165
8166/8167
8168/8169
8242
8243
83A3

948E.
948F
9490
9744/9745

Purpose

Start of Basic program

End of Basic program

String Storage pointer

Top of String Storage

Top of Memory pointer

Program found flag, O=found
Filename being loaded (16 bytes)
Filename being saved (16 bytes)
Basic Stack Area

&80 bytes. Write to VRAM &H1800+
Screen control

Color text screen byte

Color graphics screen byte

&HR0 bytes VRAM stores &H1800+ here
Top range of cursor

Bottom range of cursor

8 bytes for storage of PATTERN command -
8128 bytes for storage of VRAM data
INKEY$ Storage area

Cursor, O=normal, 2=graphics
1=lowercase, O=uppercase

keybeep, O=beep, l=nobeep

Cursor position X value

Cursor position Y value

Time$ seconds

Time$ minutes

Time$ hours

Address of DATA byte

KRERESESEKBLIBIRRRE

8888’8 LEEY

AO
Al

A4

A6
A7
A8
A9

AC
AD
AE

Bl
B2
B3
B5
B7

B9
BA

Table XXX2. BASIC KEYWORDS.

ON
RETURN
ERASE
QURSOR
IF
RESTORE
SCREEN
OOLOR
LINE
SOUND
BFEP
OONSOLE
s

01
CALL
BKE
PSET

PRESET
PAINT

BLINE
POSTTION
HOOPY
SPRITE

PATTERN
CIRCLE
BCIRCLE
MAG
VPOKE

~ X
é %

ANV A+
ANV A

b n v
o O O

=
i\

R R

E%Il a4

ESESCERBEEREEET S eRIRGRERS
&

:
:

80Al HEX$
80A3 LEFT$
80AS MID$
S0A7 TIMES

BEESElRORBRBREES
%é%ﬁ%%%é%%@%@gééﬁﬁgééﬁg

808B
808D
808F
8091
8093
8095
8097
8099 STICK
80A0 CHR$

80A2 INKEY$
80A4 RIGHTS
8046 SIR$

17

TABLE XXX3. ROM ROUTINES.

Hex Address Nature of Routine

1000 " 17BF Character table (8x8) for VDP

17C0 " 19FF Basic keywords

1CB1 Determination of free bytes

2310 Get next character into DE

2400 Write character in A to video screen
2BD4 (2BD1) Read 80 bytes data from VRAM (&H1800) to

&HO364, write 80 bytes from &HE8B36 to VRAM
(8H1800), move 80 bytes at &H9364 to &HBR36

2024 (2BCE) Read data from VRAM

2032 (2BCB) Write address in HL to VDP for VRAM read

2C3D (2BC8) Write data to VRAM

2C44 (2BC5) Write address in HL to VDP for VRAM write

2051 (2BC2) Read VDP Status register

2C54 (2BBF) Write to a VDP register. Data in A, Register in C.

3604 Hex conversion routines

3A03 Delay using the BC register

3ACF Write Sync bytes to tape

3A12 Write byte to tape

3B33 v Write 8 bytes from 819413 to VRAM

3D32 SCREFN 1,1

3D90 SCREFN 2,2

3DEE Initialise Text and Graphic screens

3FAQ " 411F Keyboard characters arranged in matrix form

4120 " 4258 Basic keyboard symbol table

4590 Reset TIMES$ to "00:00:00"

47% Change cursor to graph

475E Change cursor to normal

4766 Change input to lowercase

476E Change input to uppercase

4918 INKEY$

LAGE Write text pointed to HL to current screen
position

6300 Restart OCH (Power)

6803 Restart 381 (VDG)

6306 NMI Entry (Reset)

6ABS Print FRE routine

6C37 RUN

779F VERTFY

78FF LOAD

7A40 SAVE

TABLE XXX4. INKEY$ STORAGE ARFAS.

Memory Location Keys Monitored Values Returned

8HHE0 1047,K1 1'8,32'128
8Ho461 2WSXspc.LO 1'128
8HOAL62 3FDCeclr/;PO 1'128
8H463 4RFVdelpi :@ 1'128
8HOLOL STGBed |[1'8,32'128
&HO465 6YHNclcr 1'8,32,64
&HOL66 7UMcrtcup 1'8,32,64
8HGA67 Joysticks
&HG468 eng,fnc,ctr, 1'8
sht,spc

NOTE:
spc= space eng= eng/diers
clr= clear fnc= function
del= delete/ins ctr= control
cd = cursor down sht= shift
cl = cursor left Cup= cursor up

crt= cursor right Cr = carriage return

CHAPTER 2

21

THE VISUAL DISPLAY PROCESSOR:

The VIP is a Texas Instruments 9929A chip. This has several important -
features, such as sprites and interrupt capabilities. In the SHGA
computer, the VDP is mapped at two port locations, &HBE and &HBF.
These ports are the means by which the central processor communicates
with the VDP chip and the Video Ram.

THE VISUAL DISPLAY MODES:

The VDP has four seperate display modes. The four modes are,

1) Graphics Mode T
2) Graphics Mode IT
3) Text Mode

4) Multicolor mode

Only the two used in the SHGA will be explained here, but a program
which allows the user to program the multicolor mode is appended
at the end of this chapter.

THE TEXT MODE: The text mode provides for 40 characters wide by

24 lines of text. Only two colors may be present on the screen at any
time. Basic only allows the use of 38 characters per line, this is done t
allow for older television sets who might chop off the 1st two characters.
The two colors are referred to as the writing or foreground color, and the
background color. These colors are specified by the COLOR command, or -
may be altered by poking location &H9339 with the appropriate value.

The address of Video Ram (VRAM) used to store the characters is as shown,

B e
300 § 1st line of 40 characters 3027
*

Heslese

3FBF

ek sesksk
ek

Z

Last line of 40 characters 3
VIR DT T LA TAAE D DT T IAT T

THE GRAPHICS MODE II: The graphics mode allows all 16 colors to be used
simultaneously, and the display is arranged as 256 by 192 pixels, where

a PIXEL is a single dot on the screen. A seperate area in VRAM is _
used to store the color attribute of each pattern on the screen.

The patterns are stored as follows, (displaying the lst character in

line 1 only)

|

The characters are normally made up out of 8x8 pixel
blocks. This shows the makeup of the first character
of the first line on the graphics screen. The eight
bytes that make the character are arranged as shown,
with the address inclosed. The second character will
thus use address's 0008 " O0OF, the third character
will use address's 0010 " 0017 etc. The color byte
for each character is located at &H2000 ", ie, the
0007 color attribute address for the Ist byte is &H2000,
* for the 2nd byte it is &H2001, for the lst byte of
the 2nd character it is &H2008.

0001

0005

ok N ok ook ok sk ok
X Kk ok Sk ok ok ok

%

The following program illustrates the colors avaiable in the graphics
mode

10 SCREEN 2,2:CL8:BE=0

20 FOR X=&HO0000 TO &HLI7FF

X0 B=RelsIF B=7 THEN RESTORE:E=(
40 READ AsVPOKE X,a&HFO

U0 UPOKE X+&H2000,4

60 NEXT X

70 6070 70

80 DATA &HO1,&H24,&H35, &H&A, &H7E
90 DATA &MHBC,&H7D, &HEF

ARCHITHCHURE OF THE TMMS9929A:

The VDP chip comprises eight (8 bit) write only registers, a read only
(8 bit) status register, and an autoincrementing (14 bit) address
register. The registers hold the necessary address's or data for the
VDP chip to be able to find the required patterns in VRAM and determine
the location, color, size etc of sprites or the text. The eight register
functions in turn are;

23

Register O:

Bits

Register 1:

Bits

Register 2:

Bits

Register 3:

Register O controls the external VDP input, as well as mode
select. The external VDP input allows the image from
another VDP to appear in the background. In the case of
the SHGA this is disabled. MODE SELECT(M3) controls the
format of the display screen. This is combined with

M2 and Ml of register 1 to select the desired screen
layout. (see Table XXX5)

7 6 5 4 3 2 1 0
iy i
*0 *Q %0 %0 ¥ %0 *M¥E*
FHEEEEEEHEE80E0EEEEE66ERREEREREEHEEEREE:

Register 1 controls the Video Ram type selection, the
blanking out of the active display area, interrupt
enable, Ml, M2 and the size and magnification factor
of any sprites. The SHGA computer has the following,
VRAM bit = 1 for 4116 type, Blank bit = 1, Interrupt
enabled(5(Hz) = 1, Screen mode = text, Size and Mag
are O,

SIZE: This bit determines whether 8 x 8 sprites or
16 x 16 sprites are used.

MAG: This doubles the size of the sprites if a 1,
else if a O then the size is that set by the size bit.
(Table XXX6 gives the combinations equal to the MAG
command on the SFGA) '

7 6 5 4 3 2 1 0
B T S T o

*]6K* BL * TE % M1 * M2 % O * SIZ* MAG *
FHERHEEHREEEEEHREEHREHOBHHREHEEHRHHE

Register 2 holds the NAME TABLE address for the
text or graphic screen, this being &H3C00(text)
or 8H000O(graphics).

7 6 5 4 3 2 1 0
FHHEHEEEREEEE0EEEE0EEEEEHEREERREHEREEEE0:
Actual Address =

X 0% O * * ; *
0 0 0 0 * 4 bit Address 4 bit address *

Register 3 holds the COLOUR ATIRTBUTE TABLE address
for the graphics screen, this equal to &12000 for the SHGA.

Bits

Register 4:

Bits

Register 5:
Bits

Register 6:
Bits

Register 7:

Bits

7 6 5 4 3 2 1 O
FEHEEEHEHREEHERREHREEHEHEREEHEREERRRE

) Actual Address =
* %
8 blF Address 8 bit add %

JEEEEEEEEEEE0E0EEEHEHEEEEEERENEEEEHEE00E:
&H40

Register 4 holds the PATTERN GENERATOR address for
the text or graphic screen, being &H1800(text) or
&H3800(graphics).

7 6 5 4 3 2 1 0
S I IS

. Actual Address =
%0 % %* R *
0*0 0 0% 0 #* 3 bit Add 3 bit addr %
s e300

Register 5 holds the SPRTTE ATIRIBUTE address (&H3B0O).

7 6 5 4 3 2 1 O
FHREHEEHHHBEREEREEREREHEEREEREHREREEEH

Actual Address =
* Q% 6 bit Address x 6 bit addref *

FHHEHEEEEEEEEEREEEEEEEEEEHEEHEEEREEEE8Es: RHRO

Register 6 holds the SPRITE PATTERN address (8H1800).
7 6 5 4 3 2 1 0
HERERREREEREEREREREEHEEEEEEREEHEEERREREE
Actual Address =
O 0% 0% 0% 0% 3bit Add * 3 pit address *
SHHHHHEREREEEHEEHHEEEEEEEEEEaEEsaRHEaas 8HB00

Register 7 holds the QOLOR for the writing/background
combination.

7 6 5 4 3 2 1 O
HHEEEEEEEEEEEEHBEEEREEEHHEEHEHEEEEHEEE0

* Writing Color * Background Color *
R EEEEEEHEEEEREEREERREEE0:

STATUS Register: The status register holds the interrupt flag, the

Bits

fifth sprite flag and number, and the sprite collision
flag.

7 6 5 4 3 2 1 0
B T

*F *55%(C * Fifth Sprite Num *®
FEEHEHEEHHEEEHEHEEHEEEHEHEBEEEHEEEEHEEEE

24

25

HOW TO WRTTE/UPDATE A VDP REGISTER:

Two bytes are required to update or write to a register.
Byte 1 is the required data
Byte 2 is the required register
The composition of byte 2 is
10000 + RSO+ RS1 + RS2 (Where RSO-2
are 1 bit each)

RSO RS1 RS2
Register 0 O 0
Register 1 O 1
Register 2 0O 1 0
Register 3 0 1 1
Register 4 1 0 0
Register 5 1 0 1
Register 6 1 1 0
Register 7 1 1 1

NOIE: IT IS IMPORTANT THAT THE STATUS REGISTER IS READ AT PCRT
&1BF BEFORE YOU UPDATE ANY VDP REGISTER.

There is a ROM routine at &H2C54 which provides this facility.
Load Register C with the register number (0'7), Register A with
the Data byte before calling.

EXAMPLE: (hange the color information of the text screen by
directly writing to VDP register7.

10 SCREEN 1,1:CL&

20 PRIMNY "This is asctually blachk writing®
30 PRINT "on & green bachkground.”®

490 FOR X = &HAO000 TO &HADOC

50 READ AA : POKE X,AA : NEXT X

60 FOR DE = 1 T0O GO0 : NEXT DE

70 CALL &HAOOO @ PRINT "Rut is it really?®
80 6070 80

70 DATA 243,21%9,191,62,33,211,191

1090
110
120
130
1490

DATA 62,135,211,191,251,201

FEM Dissble interrupts, reasd status register
REM LD A with greern/black(&i21), Out(&HEF) &
REM LD A with register destination

REM Out(&HBF) A, Ernable int’s, Return

NOTE: On return to Basic, ie after pressing break, you will
notice that the screen reverts to black on green. This is
because Basic gets the color information fram address &H9339.

WRTTING TO VRAM: Load the HL register with the screen address
then call 8H2C44, and output the value to port &HBE. The
address is autoincremented by one location after each write,

€8,

ENIRY: AOOO F3 D1
AOO1 D3BF IN(BF),A
BEGIN: AOO3 21003C LD HL,3000 Text screen
ACO6 CD442C CALL 2C44 Write address

; Disable Interrupts
AOO9 0610 1D B,10 s 16 times

Clear Status register

AOOB 3E32 LD A,32 Character "2"
LOOP: AOOD D3BE QUT(BE),A Print it

AOOF 10FC DUNZ 100P 16 times

AOIO C9 RET Back to Basic

READING FROM VRAM: Load the HL register with the screen address,
call &2C32, then input the value from port &BE. The address is
auto=incremented after each read.

¢ REMEMBER *#%: Disable interrupts, then read the status register
at port &BF before you do what you want, or you will get strange
results.

ALTERING THE CURSOR POSTTION: If using machine—code then the above
procedures dealing with reading/writing to Video Ram are required
to set up the 14 bit address pointer. However, if using a hybrid
program, ie a mixture of machine-code and Basic, especially when
calling the print routine at &HAAGF, then the cursor position

may be altered by poking the appropiate X and Y values into
locations 8H9489 and 8H48A respectively before calling the print
routine. An example of this is given in the next section.

26

27

WRITING TEXT OR CHARACTERS TO VRAM: There is a routine in ROM
which allows the user to move data to the Video Ram. The
following program illustrates this. The text is hidden in the
data statements, and a machine code subroutine is used to point
the HL register to the text, then the ROM routine at &HAAGF is
called. This writes the text out to Video Ram at the current
cursor position. Note that the text must end in &HOD or 13
decimal, and you can also clear the screen etc, by the use of
control codes (cls=12 decimal).

10 SCREENM 1,1

20 FOR X=&HAO00O TU &HAOLIO 3 REM the maschine code
30 READ A: POKE X,&: NEXTX

A0 FOR Z=&HROOO TO AHROOD : REM the text string
S0 READ S: POKE Z,8: NEXT Z

60 CALL &HADOD

70 REM Change cursor >,y positions

80 DATA &H3E,&HOF ,&H32, &AHB9 ,&HP4

90 DATA &HAE,&HOA, &H32, &HBA, &HP4

100
119
120
130
140

REM Machine-code routine

DATA &H21,&HOO , &HRO, &HCD , &HAF , &HAK, &HCY
REM Texnt message follouws

DATA 78,111,116,32,66,97,100,32,101
DATA 104,33,33,33,13

ENTRY: AOOO 3EOF ID A,QF
AOO2 328994 1D (9489),A ; X position = 15
ACO5 3F0A ID A0A
AOO7 3284% ID (948A),A ; Y position = 10
ACOA 2100BO LD HL,BOO0 ; Foint to text
AOOD CD6F4A CALL 4A6F ; Call print routine
A010 CO RET ; Back to Basic
TEXT: BOOO "M ; 'Not Bad eh!(CD)'

There is also another routine used for writing a string of characters
to the video screen. This routine is at &12400 and may be used in the

following way,

10 SCREEN 1,1: CLS

20 FOR X=&HAHOOO TO &HAOO?

30 READ A: POKE X,A: MEXT

40 CALL &HAOOO

50 STOF

60 DATA &H3E, &H32, &HO6, &H20

70 DATA &HCD, &HOO,&H24 ,&H20

80 DATA &HFE,&HCY

90 REM LD A with 2"

100 REM LD B with number of times to be printed
110 REM Call routime at &H2400

120 REM Dec R and Jp not zero to print routine
130 REM Return whernn B i zero.

SPRITES: A sprite is a predefined graphic character. This can be one
of four possible sizes, eight by eight pixels, sixteen by sixteen pixels,
sixteen by sixteen pixels (double the first), or thirty—two by thirty-
two pixels (double the second). The sprite may be moved pixel by pixel
around the screen, and a test may be made to see if any two sprites
overlap by a single pixel element. The sprite size is controlled by the
MAG cammand in Sega PBasic, and the actual shape of the sprite is defined
by the PATTERN command. The position of the sprite is controlled by the
SPRITE command.

SPRITE PLANES: The Sega uses thirty-two planes, where each plane can be
thought of as a transparent screen each behind the other. Only one
sprite can be present on a sprite plane at any one time, but as the planes
are stacked behind each other, sprites appearing on the closest plane
have the highest display priority, ie, they appear in front of the
sprites on the planes behind it. Sprites can thus appear to move in
front of, or behind other sprites, depending upon which planes are used.

The pattern plane, or the plane on which ordinary text is written to, is
the lowest priority, thus sprites will always appear in front of written
text.

SPRITE COLLISION DETECTION: Sprite collisions may be detected by reading
the Status register located at port &BF. If any two sprites overlap

by a single pixel, bit 5 will be set to logic 1. A basic program to test
this would be

28

29

10 SCREEN 2,2: CLS

20 PRINT "Sprite collision demo."

30 FOR DE=1 T0O 1400: MEXT DE

40 PATTERNSSL, "FFFFFFFFFFFFFFFF"

S0 PATTERNSH2,"FFFFFFFFFFFFFFFF®

60 SPRITE 0,(120,20),1,14: C=1

79 FOR X= O TO 25%

80 E=INFP(&MEF): IF (B AND 32)=32 THEN

GOSUR 120

90 SPRITE 1,(X,20),2,C

100 IF INKEY$="" THEN GOTO 100
110 NEXT X: STOP

120 CURSOR 20,102 PRINT CHR$(S)j;"Collision”
130 REEP: C=4: RETURN

Machine code programs may look something like,

ACCO DBBF INP(&HEF), A

AO02 F620 AND 20

ACO4 FE20 P 20

ACO6 2877 JR Z Collision

AOG8 Continue with main program

SPRTTE ATTRIBUTES TABLE: Starting at address &H3B0O are four bytes for
each sprite. These groups of four bytes control the position, color

and number of each sprite. Sprite O has the first four locations, sprite
1 the second group of four bytes, etc. Refer to Table XXX7 for the
relative locations. Table XX26 lists a machine code program

which creates sprites, moves them on the screen, checks for

sprite collision, changes their color, beeps, and gets a

response fromthe keyboard (all using mcode!).

SPRITE PATTERN GFNERATOR TABLE: Located at address &H1800
are eight bytes for each sprite. These locations hold the
pattern for the sprites, as defined by the Basic command
PATTERN. This area also contains the eight by eight
patterns for the text screen. They are swapped over as
needed by the routine at 8H2BD4. The following Basic
program illustrates the creation of a sprite, and its
movement by poking the attribute area of VRAM.

10 SCREEN 2,2: CLS: PRINT® Sprite Demo®
20 BE=&H1800:REM Creste the Sprite

30 FOR X=0 TO 7: READ A

40 POKE B+X,A: NEXT

S0 B=&H3EO0: REM Cresmte attributes

60 FOR X=0 TO 3: READ A

70 FOKE EB+X,A: NEXT

80 FOR X=0 TO 285

90 POKE &H3EOD1 ,X
100 NEXT X:FOKE &H3HO03, 4
110 GOTOQ 110

120 DATA &HFF , &HFF ,&HFF &HFF &HFF , &HFF , &HFF , &HFF
130 DATA 32,0,0,105
140 REM Y=32,X=0,8PRITEQ,COLOR1S

PATTERN GENFRATOR TABLES: These address's store the eight
bytes that are needed to compose the character. For the
Text mode, the patterns are loaded from ROM address

&H1000 into the VRAM area when the computer is turned on or
reset.

ALTERING THE CONTENTS OF THE TEXT PATTERN GENERATOR TABLE:
In the text mode, the 8 x 8 patterns which make up the
character are stored at address &H1800 onwards. Only the
characters from 8120 to &HFF are defined in the pattern
table, thus the pattern for each character is obtained

by using the following formula,

address = &11800 + character value*8

This gives the address of the first byte that makes up the
character. The other seven bytes follow the address determined
by the fornula. This information can now be used to alter

the contents of the existing characters so as to provide

both normal and inverse video characters on the text screen

at the same time, Basically, the following program replaces
the eng/diers characters with the equivalent inverse video
alphanumeric set.

30

31

10 SCREEN 1,1:3A7¢=""3sFOR A=1 TO 14
20 READ AS:AZ$=AZ$+CHRS${AS) s NEXT
30 DATA &HA?,LHAE , &HES, &HAG, 6HE2 , &HEZ,
&HAS, 229, &HES6 , &HAP , &HA4 , AHAS , &HAF , 44
40 GOSUR 2000:CLS
S0 FRINT®" Welcome to ";AZ$:=:PRINT
60 PRINT® Try printing out the " ;CHR$(AHCS);
CHR® (&MCE) CHR$ (&HC7) 3" /dier‘s*
70 PRINT® charascters.": PRINT
80 STOF
2000 EB+&H1800+&HAOX¥B:C=4H1800+&H7F*8
2010 DC=(CH+&H20%8) +8
2020 FOR X=R T0O € STEF 8
2030 FOR A=X TO0 X+7
2040 DA=VFEEK(A)
2050 DE=DA XOR &HFF
2060 VFOKE(DC) ,DE:DC=DC+1
2070 NEXT:NEXT:RETURN

By manipulating the contents of the pattern tables, it would
be easy to create upside down and reverse characters as well.
Table XX27 lists such a program.

NAME TARLE ADDRESS'S: These are eight bit pointers which point
to the specific pattern required. If using the Text mode,
it represents the ASCl1 equivalent of the character.

MULTT-QOLOR MODE: Table XXX9 lists a program which experiments
with the multi—color screen mode. A machine code routine is
poked into memory and when called, it switches over to the
multi—color mode. Be sure to try this program with a color tele-
vision set, as it is quite impressive. The color attributes for
the multi—color mode are stored at &H3800 to &I3B00. Poking
these areas with different values in the range O to 255

can result in very colorful displays.

SWAPPING THE OONTENIS OF THE TEXT SCREEN: Utilising the large.
memory available with the 3K RAM cartridge, it is possible to
create a screen swap routine. This involves reading the entire
contents of the text screen into a buffer, and then carrying on
as per normal. When the old screen is required, a routine is
called which rewrites the buffer back to the screen. The
following program illustrates this. A machine code routine

~is poked into line 5 of the program.

REM AAKARAAAARAAMAAAARARABAAKBAMAMALH
AAAAAAAAAARAAAARAAAAAAAARAAAAAAAR
AABAARAARAARARAMAARARAMKAKAAARARA

10 SCREEN 1,1:CLS:PRINT® Text Screen Swap®
20 FOR X=4H9808 TO &H?83K

30 READ APOKE X,A8:NEXT

40 PRINT”® This is the originsl screen.®

50 FOR DE=1 TO 350:NEXT DE:Call &H9808

60 CLS:PRINT® This is & nmew screen.”

70 FOR DE=1 TO 350:NEXT DE

80 CALL &H9822

920 PRINT® Hows thst!®

100 STOF

110 DATA &HF3, &HDE, &HEF, &H21, &HOO, &HIL
&HCD , &H32 , &H2C, &HF3, &H21 , &HOO , &HAD
&HO&, &HOS , &HES, 6, 193, &HOE , &HEE , &HED

» AHE2, &HCL , &H10 , &HF 6, &HC?

110 DATA AHF3,&HDR, &HEF, &H21 , &HOO , AH3C

&HCD , &H44 , AH2C , &HF 3, &H21 , &HOO , &HAD

AHOS , &HOS , AHCS , 6,193, &HOE , &KHEE , &HED

&HEBZ, &HCL , &H10 , &HF 6, &HC?

wth

The routine at &HI809 saves the text screen contents into main

RAM starting at location 8HAOOO omwards, while the routine at &HG822
writes the buffer at location 8HAOOO to VRAM. Refinement of this
could result in simple animation. In machine—code the program is,

988 F3 DI ; Disable interrupts
9809 DBBF IN A, (BF) ; Clear status register
080B 21003C LD HL,3000 ; Text screen address
OB0E (D322C CALL 2C32 ;s Set up VDP for read
9811 F3 DI

9812 2100A0 LD HL,AQQ0 ;s Buffer area

|15 0605 LD B,05

9817 G5 PUSH BC ; Read

09818 0600 1D B,Q0

O81A (OEBE ID C,BE ; C= Port BE

G81C EDB2 INIR s Read until B=O
®BIE (1 ROP BC

98IF 10F6 DINZ Read ; Complete screen?
9821 (9 RET

9822 F3 DI

32

33

; Clear status register

Text screen address
Set up VDP for write

Buffer area

; Write

0823 DBBF IN A,(BF)

9825 21003C ID HL,3000
9828 (D442C CALL 2C44 ;
98B F3 DI

982C 2100A0 LD HL,AO00 ;
982F 0605 1D B,05

9831 G5 PUSH BC

0832 0600 1D B,0

9834 CEBE LD C,BE

983 EDB2 OUIR

; C=VDP
: Do until B=0

9838 (1 POP BC
0839 10r6 DINZ Write ;
983B (9 RET

Table XXX5: MODE SELECT
MS1 MS2

0 0 0
0 0 1
0 1 0
1 0 0

BITS.

All the screen?

MS3 Screen type
Graphics mode I

(32 x 24)

Graphics mode IT (256x192)

Multicolor mode
Text mode

Table XXX6: SIZE & MAG BITS.

Mag Size Bit size
0 0 8x8
0 1 16 x 16
1 0 16 x 16
1 1 32 x 32

(64 x 48)
(40 x 24)

Sega manual

MAG O (single sprite)
MAG 1 (single sprite)
MAG 2 (double mag0)
MAG 3 (double magl)

Table XXX7: SPRTTE ATIRIBUIE TABLE.

b Y POSITION |

I X POSITION |

I i ey |

I SPRITE NAME |

IECIO101I0{COLOR |

FC. If a logic one, it shifts

the sprites to the left
by 32 pixels.

QOLOUR. The 4 bits make up the

color of the sprite. Refer
to Table XXX8 for the color
values.

S

Table XXX8: COLOR VALUES.

O Transparent 8 Red

1 Black 9 Light Red

2 Green A Deep Yellow
3 Light Green B Light Yellow
4 Dark Blue C Dark Green
5 Light Blue D Magenta

6 Dark Red E Gray

7 Cyan F White

Table XXX9: MULTI-COLOR MODE PROGRAM.

CDEFFNACR) = INT(RND(1)%R) + &H3800

10 SCREEN 2,2 : CLS
20 FOR X = &HAOCOO TO &HAOI11L
30 READ A 1z FOKE X,A = NEXT &
40 DATA &HF3, &H3E , &HOO , AHD 3, &HEF
50 DATA &H3E,&HB80,&HD3, &HEBF
60 DATA &H3E, &HC8, &HDJ , AHEF
70 DATA &H3E,&HB4,&HD3, &HEF , &HCY
80 DH=&H11: DF=&H3IB800: DG=&HIEDOD
20 FOK DE=DF TO DG: VPOKE DE,DH
100 NEXT
110 CALL &HAQOO
120 X = FNA(AH300)
130 VPOKE X,RND{1)*¥&HFF
140 GOTO 120
In machine—code,
AOQO F3 DI ; Disable interrupts
AOOL 300 LD A,00 ; Select multi-mode
A0O3 D3BF QT (BF),A
AOO5 3E80 ID A,80 ; Register O
AQO7 D3BF OUT (BF),A
AQ09 3HC8 ID A,C8 s Multi-mode
ACOB D3BF QUT (BF),A
AOCD 3ERA 1D A,84 ; Register 1
AOQF D3BF QUT (BF),A

AO11 &) RET

34

CHAPTER 3

THE SOUND GENERATCR.

The sound chip is a SN76489AN device. It requires 32 clock
cycles for the transfer of data from the CPU to be latched
internally. This involves the use of the Ready line being
tied to the WATT input of the Z80 CPU.

This means that when loading the sound generator chip with
data, theCPU is actually slowed down. The SG contains three
programmable tone generators and a noise source, the output
of each controlled by a programmable attenuator. The SG chip
is port mapped at 8H/F. The frequency and register is
selected by a two-byte combination, while only one byte

is necessary for attenuation control.

FREQUENCY SELECTTON.

To determine how to program the SG chip the following infor-
mation is necessary,

Clock speed = 3.84Mhz
N = Clock speed / (32 * Required frequency)
where N is converted to a 10 digit binary number.
Thus, to generate a tone of 100(Hz;

N = 3840000 / 32 * 1000
=120 (N is always rounded to an integer)
Now convert N to Binary = 0001111000 (Most significant bit first)

REGISTER SELECTION.
To determine which sound register Table XX10 is used.

WRTTING THE FREQUENCY AND REGISTER TO THE SGC.

In the above example-of a 1000Hz tone, N was derived into a
10 digit binary number of 0001111000. These ten bits, along
with the register code from Table XX10 are used to form the
two bytes required to program the desired frequency and sound
channel. Thus the format of the two bytes is,

Byte One: 1 + Register Code + last 4 bits of N
Byte Two: 00 + first 6 bits of N

Thus for our example of a 100(0Hz tone using register one,

Byte One = 10001000 (or &H88)
Byte Two = 00000111 (or &HO7)

The tone is produced by outputting the two values to port
8H7F, thus

OUT &H7F,&H88 : QUT &H7F,&HO7

will produce the desired result.

ATTENUATION CONTRCL.

Control of the programmable attenuators can be achieved by
a single byte update. The format of this byte is as follows,

Single Byte = 1 + attenuation register + attenuation value

The attenuation register is three bits and is shown in Table

XX11. The attenuation value is shown in Table XX12 and comprises

four bits. Thus to attenuate tone register one to a value
of 10db using Basic,

Single byte = 10010101 (&H95) so OUT &H7/F,&H95

THE NOISE GENERATCR,

Updating the noise register and attenuator requires a single
byte transfer. This byte is 11100 + FB + SR

FEFDBACK QONTROL (FB): If FB=l then noise is "periodic"
else if FB=1 then the noise is set to 'white' noise.

SHIFT RATE (SR): Refer to Table XX13 for the values of the
two SR bits.

ATTENUATION CONTROL OF NOISE REGISTER: This is the same
as described earlier, only the register code is 111.

SAMPLE EXPLOSION: To generate an explosion, use "white noise"
then slowly increase the attenuation from Odb to OFF, Thus the
frequency control byte is,

11100 + 1 + 00 = 11100100 (or &HFA)

The attenuation bytes range from Odb to OFF thus the range
is,

1111 + 0000 to 1111 + 1111 (or &HFO to &HFF)

37

38

thus the program in Basic is,

10 OUT &H7F,&HEA : FOR X = &HFO TO &HFF : OUT &H7F,X
20 FORIDE =1 TO 20 : NEXT DE
30 NEXT X

CREATING MUSIC: Table XX14 is a Basic program which allows
the user to input a series of notes (up to 255) and then
play them back. The program calculates the various bytes
necessary to program the sound generator chip.

TABLE XX10 REGISTER CODES

Register Binary Code
Register 1 000
Register 2 010
Register 3 100
Register 4 110

TABLE XX11 ATTENUATOR CODES.
Attenuator Binary Code

Tone reg 1 001
Tone reg 2 011
Tone reg 3 101
Noise reg 111

Table XX12 ATTENUATION TABLE.
Attenuation Value Binary Code Attenuation Value

Odb 0000 2db

4db 0010 6db

&b 0100 10db
12db 0110 14db
16db 1000 18db
20db 1010 22db
24db 1100 26db

28db 1110 033

Binary Cod

0001
0011
0101
0111
1001
1011
1101
1111

Table XX13. SHIFT RATE BITS.
SRO SRl Desired Frequency of Noise.

0 0 Clock/512

0 1 Clock/1024

1 0 Clock/2048

1 1 Frequency is that specified by Register 3
Table XX14

MUSIC PROGRAM & SOUND EDITOR.

Music and Sound Editor,

5 PATTERNCHRHDG, "7884B1A4A4B48B4./8"
18 PN=&HPF :0IM X1(255),X2(255),X3(255)
s W(2553,T2(255)

20 FLAG=0Q

30 SCREENDL, 1:CLS

40 PRINT"Muslc Editor. By B.Brown
";CHR$(&HDA) ;" 84" ‘

S8 PRINT"——=————mmmm—= = —————m—m——

60 PRINT:PRINT"Opiions”

70 PRINT "1 - Play memory artea®
880 PRINT "2 - Create music "
98 PRINT "3 ~ Edit muslc array”

180
110
120
130
149
150
200
210
220
B;"
HEN
230
240

PRINT:PRINT "Select desired option

ARS=INKEY$:IF AA$=""THEN GOTO 110
IF AAs$="1" THEN GOTO 829

IF AA$="2" THEN GOTC 989

IF AA$="3" THEN GOTO 1008

GOTO 110

REM INPUT ROUTINES

Bl1$="10000000"

PRINT"Freq (118~350Q) of tone H" ;&
"5 INPUT FT:TF FTC118 OR FT>3580 T
GOTO 220

BT=3840000~/ (32%FT)
DB=INT(BT+.5):GOSUB 439

39

250 B1$=LEFT$(Bl1s$,4)+Als
260 B2%$=A2%
270 INPUT"Tone level (1~15) ";TL
288 IFCTLC1J)ORCTL>15)THENZ270
230 DB=TL :GOSUB 430
300 B4s$="1001"
310 B3$=B4s$+RIGHTS$(A2%,4)
320 GOSUB 809
38 REM N1=Bytel,NZ2=Ryte?2,N3=Atten
340 GS$=B1$%$:605UB679:N1=08B
258 GE$=B2% :G0SUB670 :N2=08B
360 GS$=B3% :G0SUBBK/A :N3=0B
379 PRINT"Desired resi period "
383 PRIMNT"before next note.";:INPUT 2C
:RETURN
390 REM PLAY ROUTINE
400 CUT(PN),N3:0UT(PN),N] OUTC(PN);N2
410 FOR TP=1 TO ZC:MNEXT
428 RETURN
430 REM DEC TO BIN
4490 REM INPUT=DB8,0UTPUT=AlS,A2$
G959 FORZ2Z=]T010:AA(22)=0 :NEXTZ2
4608 DB=INT(DB)
478 FORT3=1T010
480 T2=0B MOD 2
4808 [FT2=1THENAA(T3)=]
508 DB=INT(DBs2) '

510 NEXTT3
S20 Al$=%":A2¢="" (FURZZ=1TOIC

S30 Al3=A1$+STRS$IAA(Z2)) :NEXT 22
" 549 GOSUBSB8OB:A)$=58%

550 A2$="00Q"+LEFT$(A1$,6)

569 Al $=RIGHT$(AlS$,4)

570 RETURN
580 SAas=""
580 FOR S=1TOLENC(AlS$)

680 IFMIDS$(AIS$,S,1)=" "THEN6209
610 SA$=SAs+MID$(A1$,S,1) '
628 NEXT S:SBg$=""

630 FOR S=1 TO ILEN(SAS$)

649 SB$=SB$+MID$(SAS,LEN(SAs$I+]1--S, 1)
6358 NEXT S

66@ RETURN

678 REM STRING TO DECIMAL

680 REM INPUT=GS$,0UTPUT=0B

69Q@ 0B=0

780 IFMID$(GS$,1,1)="1"THEN 0B=0B+12¢
710 IFMID$(GS$,2,1)="1"THEN 0B=0B+64
728 IFMNID$(GSs$,3,1)="1"THEN OB=0R+3?2
730 IFMID$(GSs$,4,1)="1"THEN 0OB=0B+16
740_ JFMID$(GS$,5,1)=11"THEN.OB=0R+8
750 IFMID$(GS$,6,1)="1"THEN 0B=0B+4
768 1FMID$(GSS,7,1)="1"THEN 0B=0B+?2
278 IFMID3$(GS$,8,1)="1"THEN 0B=0B+]
780 RETURN

788_REH RESET SOUND CAHNNELS

888 OUTPN, 153:0LTPN, 1381 :0UTPN, 223

810 OUTPN, 255:RETURN

820 "REM PLAY NUSIC

830 CLS:PRINT"Playing music, " :PRINT"--

840 IF FLAG=Q THEN PRINT:PRINT"Music a
"rray is emply." :GOSUB 1140:G0T70-30

850 FOR 2B=1 TO 255

860 N1=X1(2B):N2=X2(2B) :N3=X3(2B) :2C=W
(2B):IF N1=3 AND N2=8 AND N3=Q [IHEN 2B
=235:G0T0 880

870 GOSUB 336:S0OUND @

880 NEXT 2B

830 GOTO 3@

8808 REM Create music

1€ CLS:PRINNT "Creale fluslc," :PRINT"-~
——————————— "IPRINT:GOSUB 1140

323 INPUT"Houw many noltes to play.";2A

930 IF Z2A>255 THEN GAOTO 3S2@

.94 FOR 2B=! TO 2A

850 GOosuB 709

9060 X1{ZB)=N]1:X2(e8)=N2:X3(2B)=N3:U(2B8
1=2C:T2(2BJ)=FT

970 NEXT:X1(2B)=0:X2(2B)=0:X3(2B)=0@

41

980 GOSWB 1140:FLAG=]:GOTO 30

830 STOP

10680 REM Edit music

1819 CLS:PRINT "Edit Music." :PRINT"-—--

———————— "IPRINT:IF FLAG=@ THEN PRINT "
Bulfer i1s empty,":GOSUB 1146:G0OTO 309
1820 PRINT "Freq bytes can only be cha

nged, not"

1938 PRINT "“inserted. Use Lhe ";CHRS$(&
HBE) ;" key Lo change a " :PRINT “tLone,
else ";CHRS$(RHBF);" key Lo mouve to the
next" :PRINT "“lone, and CR to abort."
1040 FOR ZB=]1 TO 255

1850 PRINT "Tone ";2B;" is ";T2(2B):i"H

it

1855 PRINT "ilait period is®;W(&B)

1860 TR$="":TR$=INKEYS$

1880 IF TR$=CHR$(38) THEN GOSUB 1150:G

070 1850

1100 IF TR$=CHR$(23) THEN GOSUB 1149:N

EXT

1110 IF TR$=CHRs$(13) THEN 1138

1120 GOTO 10608

1138 GOSUWB 1140:GO0T0 30

1148 FOR DE=1 T0O 200 :NEXTDE :RETURN
1150 GOSUB 1140:G0SUB 200 :X1(2B)=N1:X2
(Z2B)=N2:X3(2BJ)=N3:W(2B)=2C:T2(2B)=FT:R

ETURN

CHAPTER 4

CASSETTE ROUTINES.

MAJOR ENTRY POINIS: The major entry points for the cassette
routines are,

VERTFY &H779F
LOAD &H/8D5
SAVE &H7A40

PROGRAM FORMAT: The programs are saved in two stages. The
first part is the Header section. This comprises sync bytes,
and the 16 character filename. The main program is saved next,
this includes address's and the actual program, ie, line
numbers etc.

VERIFY/L0AD: These routines are prefixed with a small routine
vhich searches for the filename of the program. The filenames
may be up to sixteen characters long, and for loading or
Verifying, the filename is stored at location &H82A3 onwards.
The filename from header section of the tape is loaded, then
compared with that stored in memory. If no filename was
specified, the program jumps to the load main program section.
If a filename was specified, and found to match with that
readfrom tape, the program is loaded. If the program does
not match, a jump is made to the slkdp portion of the program.

FILENAME STORAGE: Location 8H82A2 is used as a Filename found
flag, and if zero then the next program found on the cassette is
loaded, else a Filename Found flag, if zero then the program is
loaded, otherwise skip is made. When saving a program, the
filename is taken from the keyboard input buffer, corresponding
to 8H83A3 [up to 16 bytes]. If the filename is less than 16
bytes, then the filename is padded with blanks.

ADDITIONAL INFO: Table XX15 lists the major entry points of all
the cassette routines, and their function. Also listed are the
sub-routines which are called also. Table XX16 and XX17 are

Basic programs which load the Header and Program Bytes respectively
to the video screen.

AUTOLOAD AND EXBCQUTE BASTC PROGRAMS: This may be achieved by poking
a machine language routine into reserved memory. If the computer
is then reset, the program will not be erased. The machine code
routine calls the main entry point of LOAD, then calls &H6C37

which is the RUN entry point for Basic programs. However, location
&H82A2 which holds the filename found flag must be zeroed to indicate
that the next program found must be loaded. Table XX18 illustrates
how this may be achieved.

MERGING BASIC PROGRAMS: A program to merge two Basic programs must
use a machine—code routine to save the Ram pointers in memory, call
the Load routine in Rom, reset the pointers and call the load
routine a second time. The program listed below is a combination of
most of that which has already been covered. It must be noted
however, that the second Basic program's line numbers must be
greater than the first or part of the program will be deleted.

10 SCREEN 1,1 CLS = PRINT "RASIC MERGER®
20 PRINT: PRINT "lLoading Mcode.®

30 POKE &H81488,0 @ FOR X=&HFFOO0 TO &HFF2F
35 REM Reserve memory space at top of memory
40 READ 4@ POKE X,A: NEXT

70 FRINT "Press PLﬁY to Toad first program.”
80 POKE &H8242,0: CALL &HFFO0

920 END
100 DATA &HCD, &HEF ,&H78
110 DATA &H2A,&H62,&HB81 , &H2ER, &H22,&H60,&HB1
120 DATA &H3IE, &HOO,&H32, &HAZ2 , &HB2 , &H2L , &HLF
130 DATA AHFF,&HCD, &H6F , &H4A, &HCD , &HEF , &H78
140 DATA &H21 ,&HOO,&H?8 &H¢x,&H60,&H81,&HC9
150 DATA 76, 111 ?7,100,32,50,110,100,32,112
160 DATA 114,111,103,114,97,109,&HOD

In machine—code the program is,

FFOO CALL 78FF (LOAD progl)
1D HL (8162) (Basic end pointer)
DEC HL
ID (8160),HL (Store it into Basic start)
ID A,00
1D (82A2),A (Filename found flag)
LD HL,FFIF
CALL 4A6F (Print text message)
CALL 78EF (10AD prog?)
1D HL,9800
ID (8160),HL (Set pointer to progl)
RET

FFIF 'load 2nd program.' (Text message)

45

46

Rom Address (Hex)

3A03
3ACF Write sync bytes to tape
3A12 Write byte in A to tape
779F Verifying Start
777 Skdp
7822 Found
785D Verifying End
788F Verifying Error
78D5 Loading Start
78FD " 790E Compare Filenames
7928 Skip
79% Found
7982 Load Program
799AA Loading End
79E9 Tape Read FError
M0 Saving Start
7A59 "' 7A85 Save Filename
TA%% Save number of bytes
7ABS Save Sync Bytes
7AD2 Save Program
7AED Saving End
7807 Write HL to tape
7B13 Pad Filename with Blanks
Table XX16. LOAD HFADER TO VIDEO SCREEN.
10 SCREEN 1,1 ¢ CLS : PRINT "Press Play
to Load program.” = B = 0
20 FOR X = &H78EF TO &H7923
30 POKE AHABEF+R,PEEK(X) = R = 2 +
40 POKE &HA90R,&HD3
50 POKE &HA90C, &HRE
60 POKE &HA924,4HCY
70 CALL &HABEF
80 GOTO 70

TABLE XX15. CASSEITE ROUTINES IN ROM.

Function

A Delay routine using the BC register

1

NEXT X

Table XX17. LOAD PROGRAM BYTES TO VIDHO SCREEN.

10 SCREEN 1,1 : CLS : PRINT "Fress Play
to l.oad Frogram."”

20 FOR X = &HAOO0D TO AHAO22

30 READ A @ POKE X,A : NEXT

40 CALL &HAD0O

SO0 STOP

60 DATA &HF 3, &HCD, &HOO, &H3A, &HCD, &HO06

70 DATA &H3A,QHFE ,&H17,4H20, 4HFS, &H24

80 DATA &H60,&H81 ,&H06,4&HO0, &HCD,&HOA

90 DATA &H7A,&HD3, &HIE , &AH3E , &AH3F , &HCA

100 DATA &HAB,&H24,4&H23, &HI1E, &AH7A, &HETS

110 DATA &H20,AHFO, &HC3 , &HAY ,&H79

Table XX18. AUTO LOAD AND RUN BASIC PROGRAMS.

10 SCREEN 1,1 ¢ CLS = PRINT * Press Play
to Load and Rurm Program.”

20 DATA &HCD,&HDYS , &H78, &HCD, &H37, AH6C

30 FOKE &HB8148,0

40 FOR X = &HFO00 TO &HF 005

S50 READ A = POKE X,A 2 NEXT

460 POKE &HB2AZ,0

70 CALL &HFO00O0

47

CHAPTER 5

49

THE KEYBOARD AND JOYSTICKS.

The keyboard, joysticks, cassette and printer are all controlled
by an interface chip (8255). This interface chip allows the
connection of the devices to the CPU, and the transfer of
information between them. The interface is programmed by the
cpu, ie it is instructed on what to look for and what it must
do. This process is normally transparant to the user, ie the
user is unaware of the process's being executed.

THE KEYBOARD: The keyboard is arranged in a matrix layout of
eight colums by eleven rows. Only one colum may be activated
at one time, and the colums are controlled by a decoder chip.
The keyboard rows are connected to two different ports, only
one can be read by the cpu at any time. An intersection

(which occurs due to a keypress) between the colum and row of
the matrix is detected by the cpu and is then interpreted to
find out the actual key being pressed. Refer to Table XX20
for the key matrix layout.

THE 8255 PERTPHERAL INTERFACE (HIP: This is a programmable
chip, and allows the connection of the keyboard, cassette,
printer and joysticks to the cpu. The PIA has three ports,
A,B, and C and a control register. The information written
to the control register will determine the status of each port
(ie inputs or outputs). When the ports are used as outputs,
the written data is latched or held internally till the next
update. In the SHGA the following is to be noted,

Port A is input, mapped at &1DC, comnected to X colums of

key matrix

Port B in input, mapped at &HDD, connected to X colums of
key matrix

Port C is output, mapped at &IDE, connected to Y colum of
key matrix

Control register is mapped at &HDF

The data or words written to the control register to set up the
specific ports as input or output are,

Bits 7 6 5 4 3 2 1 O

FEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEERE0T

¥ 1% 0 *Q% 1 %¥Q ¥0% 1 %0 %

Sy e e i T Ay S i e Ay iy Sy i i T Ay Tl 1

Bit 4 = Controls A
Bit 3 = Controls C upper
Bit 1 = Controls B
Bit O = Controls C lower

thus the byte to intialise the PIA is &H92 or 146 decimal.

ADDRESSING THE KEY-MATRIX.

The lower three bits (0,1,2) of Port C is used to address the
Y colums of the keymatrix. The output of Port C is applied
to a 741S145 BCD decoder, which provides a one out of eight
output to activate only one Y colum at a time. The status
of the three lower Port C bits will determine which output
of the decoding chip is activated. Table XX18 lists the
combinations of these three bits and the resultant activated
output of the decoder. Table XX20 lists the keyboard

matrix.

SCANNING THE KEYBOARD USING MACHINE-OCODE: Table XX21 lists

a Basic program which pokes a machine—code subroutine into memory.
This routine intialises the PIA with &192, then outputs a
specified byte to port C, thus selecting the desired Y colum
of the key-matrix. This byte is specified in line 75 of

the program, and refer to Table XX19 for the value of the

byte and its appropriate colum. It then loads the value of
ports A and B, storing them in &AOQO and &HAOOL respectively,
before returning to Basic. By checking the returned code from
port A or B, it is thus possible to search for a specified
key press. Having assembled the routine into line 5 of the
program, all data statements etc can be deleted from the

final program. Table XX26 lists a program which scans

the keyboard, and moves sprites etc, all using machine code.

MISCELLANEOUS CONNECTIONS: The remaining tables list the
various connectrions of the SHGA and their appropriate function.

THE PRINTER PLOTTER: This relies on a single chip microprocessor,
a 6805 up. Being a factory programmed device, it must be replaced
in total, ie you haven't got access to the software controlling the
6805. Also note that the same mechanism is used by the ORIC, and
OOMMODORE printer plotters, and the spares are also the same,

ie pens etc. Some SHARP printers are also identical, so shop

around for pens, paper etc

50

Table XX19. THE 741S145 DROODER OCMBINATIONS.

[l

Y Columm Hex Byte (outputted to &HDE)
YO
Y1l
Y2
Y3
Y4
Y5
Y6
Y7

H+~k4hao<3c>c>§
'—"—"OOI‘—"—‘OOR
'—‘Ol—'oi—'o'—‘og

SRERBLIES

Table XX21. BASIC KEY-SCAN PROGRAM.

S REM AAKAARAAALBAABAAAAAAAAAAANANAAA
AARRAAARABARAAMMARAMAAMAAAAAARAA
7 REM Line © hae asbout 100 A’s in it.
19 SCREEM 1,1:CLS
20 FOR X=&H?808 TO &H?81F
20 READ A:POKE X,ANEXT X
490 CALL &H9808
50 PRINT"Port A ="3;PEEK{&HAODO)
" Port K =" PEEK(&HADOL)

60 GOTO 490

6% DATA &HF3

70 DATA &H3E, &H?22, HHDJZ , &HDF

75 DATA &H3E, &HOO

80 DATA &HD3, &HDE, &HDE, &HDC

8% DATA &H3I2,&HOO0, &HAD, &HDE , &HDD
20 DATA &H32,&HO1 , &HAO, &H3E , &HI2
25 DATA &HD3, &HDEF , &HCY

100 REM YO0=00,Y1=01,Y2=02,YZ=03
110 REM YA=04,Y5=00,Y6=06,Y7=07
120 REM Change the 2nd byte iv Vine 79
130 REM to scan a different row.

Table XX20. KEYBOARD MATRIX LAYOUT.

BZ55 RoRTC

e RSl Ao
OUTPUT

B Y\ Y2 Y5 Y YSYG Y7

8255 PORTA (oysTicK)

INPOT F__ |
re— I H2H3H4HeoHGeH7H&
m—laHwHeE He HT HY H o Hen
PAR ——] A ﬂ‘é 6 F;- G H \J-—Lir
R L
$m4~haé E#t <i2 [ﬁL— I I ;:?
PASS —— ; :) —'i ; —‘;"*—__é;
el HUHs H: HT HerH 1t HZ
Fmv——:f-é) P —@5'—[£ Iy 3 — o
eg—|8 HO H & H — ’{—¥]JB;2K—L§_;
Nl et
PRZ L CmL_Hgl
PEa— r I AH FUIN'; SPTH oo
NMT: RESET

52

53

Table XX22. JOYSIICK PIN CONNECTICNS.

Pin Number

OO WN —

Function
Up

Down
Left
Right

No connection

Left fire

No connection

Common
Right fire

Table XX23, PRINTER PIN CONNECTICNS.

Pin Number

~NOo U~ WwWwN -

Function
Fault
Busy
Data
Reset
Feed

Gnd

No connection

Table XX24. PORT B & C CONNECTIONS.

PBO
PB1
PB2
PB3
PB4
PB5
PBO6
PB7

Key Matrix PO
" 1" H:l
" " PCZ
" " RB

Not Used PCA

Fault (Printer) PC5
Busy (Printer) PC6
Cassette Input PC7

Key Matrix
"

"

" 1"

Not Used
Cassette Output
Data (Printer)
Reset (Printer)
Feed " 1"

Table XX25. VIDHO PORT CONNECTIONS.

Pin Number

hn W -

Function
Audio
Gnd
Video
Gnd

Gnd

EXPANSION EDGE COONNECTOR.

Pin number

OO~ B~ WN =

AO
Al
A2
A3
AL
A5
A6
A7
A8
AS
AlO
All
A12
A13
DO
D1
D2
D3
Da
D5
D6
D7

Y

Pin number (Component side)

OO B~

+5v
+5v
CSRAM
CERCM2
MEMRD
MEMWR
T/ORD
I/OWR
No Connection
MREQ %
N
RAS1
CAS1
RAM A7
RAS2 *
CAS2 *

MUX *

Ald

Al5

No Connection
G\ND

GND

b d

Sk k%

Xk

S Sk

* means active low

54

55

OFFA
OFFD
ACOO
AO02
AOO4
ACO6
AOC8
ACCA
AOCC
AOCE
.0210)
4012
AOl4
AO17
AO1A
AOIC
AO1D
AO1F
A021
AQ24
A026
A28
AO2A
A0
AO2F
A032
AC34
AO35
AO37
AO39
AO3C
AO3E
A040
AOL2
ACL4
AGAS
AG47
A049
AO4B
AG4D

Table XX26. MOODE DEMONSTRATION,

O1E803
CD033A
3E92
D3DF
3E00
D3DE
DBIC
FFFE
2806
FEF7
281A

« 18E6
210138
(h322C
DBBE
3D
FEOO
2807
Chas2C
D3BE
181C
3EFE
18F5
21013B
CD322C
DBBE
3C
FEFF
2807
CD442C
D3BE
1804
3EFE
18F5
F3
DBBF
E620
FE20
2803
C39A9F

START: 1D BC O3E8
CALL 3A03
MAIN: ID A,92
QUT(DF),A
ID A,00
QUT(DE),A
IN(DC),A
CP FE
JR Z LFFT
CP ¥7
JR Z RIGHT
JR START
LEFT: ID HL,3B01
CALL 2C32
IN(EE),A
DEC A
CP 00
JR Z INC2
CALL 2Ch4
QUT(BE),A

WRTT2:

JR DETECT

INC2: 1D A,FE
JR WRIT2
LD HL,3B01
CALL. 2C32
IN(BE),A
INC A
CP FF
JR Z INC3
WRIT1: CALL 2C44
QUT(BE), A
‘JR DETHCT
INC1: LD A,FE
JR WRIT1
DETECT: D1
IN(BF),A
AND 20
CP 20
JR Z QOLL
JP START

RIGHT:

;Delay routine

:Check for key "1"

;Check for key 'Z"

A0S0
AO53
A06
AOS8
AOSA
AOC
AOSF
AO61
AO6A
AO67
A069
AO6B
AOGE

AO71
AO72

AO75
AO78
AO79
AO7B

AO7C
AOTE
AC8O
AGB1

ACB4
AGBS

ACB8
AOSB
ACBC
AGBE
AC8F
A9l
A093
AO%
AOS7
ACSA
AOSD
AOAS
ACAD
ACB1

21033B (OLL:

CDA42C
3004
D3BE
0605

CDAOS6 BEFP:

10FB
21033B
CD442C
3E08
D3BE
C3FASF

219DA0 PATTERN:

E5
210018

CDa42C
El
0610

7E WRTT1:

D3BE
10FB
(&)

21ADAC ATTRIB:

E5
21003B

CDa42C
Fl
0008

7E WRIT2:

D3BE
10FB
62

CDOEAO ENTRY:

(D81A0

C3FASF
AAAAAAAAAAAAAAAA
(002070A8F8500000
64500102
64640004

LD HL 3BO3
CALL 2Ch4
LD A,04
QUT(BE),A
1D B,05
CALL 50A0
DUNZ BEEP
LD HL 3B03
CALL 2C44
ID A,08
OUT(BE),A
JP START
LD HL AO9D

PUSH HL
ID HL 1800

CALL 2C44
POP HL
LD B,OF
LD A, (HL)

OUT(BE),A
DINZ WRTT1
RET

1D HL AOCAD

PUSH HL
LD HL 3B0O

CALL 2C44

POP HL

LD B,7

LD A, (HL)

OUT(BE) A

DINZ WRTT2
RET

CALL AOGE

CALL A081

JP 9FFA

;Set up sprite
8 x 8 patterns

;Write to pattern
area Vram

;Write the pattern
bytes

;Set up sprite
attributes

;Vram sprite attrib
address

;Write attrib bytes

;Do sprite patterns
;Do sprite attributes
;Go do main routine

SPRITE O PATTERN
SPRTTE 1 PATTERN
SPRTIE O ATTRIBUTE
SPRTTE 1 ATTRIBUIE

56

57

MATN ENIRY:

IN BASIC

10
20
30
40
50
60
70
80
90

100

110

120

130

140

150

160

170

160

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

340

AO% NO ERRORS DETECTED

SCREEN 2,2 CLEB
FOR X=&H9FFA TO &HAOEA4

READ
Cal.L
DATA
DATA
DATA
DATA
DATH
DATA
DATA
DATA
DATH
DAaTH
DATA
DATA
D&TA
DATA
DATHA
DATA
DAT A
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATH
DATA
DATHA
DATA
DATH
DATA

f: POKE X,Az NEXT

&MAD94A: STOF

&HO1, &HEB, &HO3, &HCD, &HO3, &H3A
&H3E , &HO 2, &HD3, &HDF , &H3E , &HOO
&HD3, &HDE , &HDE, &HDC , &HFE , &HFE
&H28, &HO& , AHFE , &HF 7, &H28 , &H1A
&H18, &HES, &H21, &HO1 , &H3R, &HCD
AH32, &AH2C , &HDE, &HRE , AH3D , &HFE
&HOO , &AH28, &HO7, AHCD, &HA4 , &H2C
&HD 3, &HEE , &H18, &H1C , &H3E , &HFE
&H18, &HES , &H21, AHO1 , &H3E, &HCD
AH3D, &H2C, &HDE, &HEE , &H3C , &HFE
&HFF , &H28, &HO7 , &HCD, &HA4 , &H2E
AHD3 , AHEE , &H18, &H04 , AH3E , &HO
&H18, &HF S, &HF 3, &HDE, &HEF , &HE &
&HZO , AHFE , &H20, &H28 , &HOB, &HC3
HHE A, &HPF , &H21, &HOB, &H3E, &HED
&HA4 , AH2C , &HIBE, &HO4 , AHD 3, &HEI
&HOG , &HOS , &HED , &HAO , &HSG , &H1D
AHFE, &H21, &HO3, &H3E , &HCD, &H44
SH2C , &HJE , &HOB , &HD3, &HEE , &HCS
&HF A, AHYF , &H21, &HOD , AHAD , &HES
&H21, &AHOO , &H18, &HED, &HA4 , &H20
AHEL , &HO6 , &H10, &HTE , AHD3 , &AHEE
&H10, &HFE, &HCS , &H21, &HAD , &HAO
&HES , &H21, &AHOO0, &H3E, AHCD , &H44
&H2C, &HE 1, &HO04 , AHOB, &H7E , &HD3
&HEE , &H10, &HFE, &HCY , &HCD , &HOKE
HHAO , &HED , &HAB1, &HAD, &HTS , AHF A
&HOF , &HAA, AHAA, &HAA , &HAA , AHAA
AHARA , AHAA, &HAA, &HOO, &H20 , &HT70
AHAB , AHF B, &HS50, &HOO , &HO0 , &H64
&HEO , &HO1 , &HO2, &HA4, hHE4 , &HOO
&HO4

S
0
[
B}
P
P

,3

I\J'—‘
LRSI AN R o

O v D w
53 O U

\J
Q

[D
80 P
3 A
70 38
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

250
Cl+8
260
Cl+1
270
Cl+3
2380

+64 .

TABLE XX27 CHARACTER MANIPULATOR

CREEM 1,1:CLS

I ubDe8l),r208)

LIRS0RB, @

RIMT"CHARACTER MANIPULATOR'™

RINT :PRINT "OPTION."

RINT " 1=INUERSE"

RINT " 2=REUERSE"

RINT " 3=UPSIDE DOWN"

RINT CHR$(S) ,
F=INKEYS:1F A$C"I"OR ASY "3 THEN G0
0

FOR Niz=1 TO 10Q:NEXT DE
A=UAL(AS) :ON A GOSUB 138,200, 330
GOTO 30

REM INUERSE

LOSUB 110

FOR A= TO 7

UDCAI=UDCAI XOR &HFF

NEXT

GOSUB 480 :REM CALL IUPDATE

GOSUB S30:RETLIRN

REM REUVERSE

GOsSUB 410

FOR C=8 TO 7:P2(Cl=0:NEXT

FOR C=0 TO 2

IF CUDCCIAND 128)=128 THEN [P2(C)=4

IF (UDCCIAND '64)=64 THEN P2(C)=P2(

IF CUDCCIAND 32)=32 THEN P2(C)=P2(
6
IF CUBRCCIAND 16J)=16 THEN P2(CJ)=P2(
2
IF CUDCCIAND 83=8 THEN P2(CJ)=P2(C)

58

59

230

+128

390
310
320
230
240
350
260
370
280
330
400
410
420
430
440
450
460
470
480
490
S08
510
520
530
240

530

1F (UDCCIAND 4)=4 THEN P2(C)=P2(C)

MEXT

FOR B=0 TO 2:UD(BY=P2(B) :NEXT
GOSILIB 480 :505UB 538 :RETLRN
REM UPSIDE NOWM

GOSIB 110

B=/:FOR A=0 TO 2
P20A)=UDCAD :NEXT

FOR A=@ TO 2

HDCAI=P2(B) :B=B-1

NEXT :GOSUB 489

GOSLIB 530 :RETURN

REM COMMON

CLURSOR 0,6

INPLT "CHARACTER UALUE 2" ;X
AD=&11800+X*B : Y=0

FOR B=AN TO AD+?
UDCY)=UPEEK(B) : Y=Y+1

NEXT :RETURN

REM UPDATE
AD=8H18VO+XXB:Y=0

FOR B=AD TOAD+?
UPOKE(BJ, UDCY) :Y=Y+1

NEXT :RETURN

CURSOR 30,8:PRINT CHR$(X)
GOT038

CURSOR 30@,0:PRINT CHR$(X) :RETURN

CHAPTER 6

61

INTERESTING BITS AND PIHECES.

This chapter is dedicated to all those wives who spend endless
hours trying to convince their husbands to give up that stupid
toy, and spend more time with them. Gathered together in this
chapter are the solutions to a wide range of problems, so now
there is no excuse for husbands to spend all night trying all
those various programming methods that don't work.

A SHGA PRINT USING STATEMENT:

Some people wish that the SHGA had a PRINT USING statement.
Basically this allows you to format numbers which always
appear in the same place, and with the same number of decimal
places after the decimal point. So here is a routine which
will always display numbers to two decimal places, and
always place it so that the numbers line up with the decimal
point always in the same column.

LOOIMPUT A

20 MY A s‘(OO G100
A0 M ’:!'» + 53 Y k£

40 1w (‘. H)

50 FOR xmm TG
60 TF MIDFLAS, 1,10=" " THEN GOTG 100
7O NEXT

QO ABfE et 00"

20 GOTO 5190

100 IF Il THEN A= o

110 FOR M=l TG 10-1

120 A" e

130 NEXT K

140 FRINT A%

1%0 6070 10

The value of 10 in line 110 has been used to give a number
with twelve characters long. The program would be used as a
subroutine within your particular program, and accessed by
a gosub statement.,

A FAULTY RENUMBERER:

Not that you would want one anyway! No, just a note to say
that the SFGA RENIM command does not work properly. To
illustrate its major weakness, type in the following

program.

1O INFUT" S irg”™ A%
20 IF LEMOAS)Y (7 THEN GOTO W00
3O IF LENCASY & THEM 400
40 GOTO 190
SO0 FRINT " A%CT7" s GOTOQ 10
OO0 PRINT " &%k 4"y GOTO 190

Then use the RENIM command. The program will be
renumbered as follows,

10 INFUT" Sl ing®;a%

20 1F LENCASY (T THEN GOTO 500
30 OIF LENCAS) S THEN 400

8 GOTO 190 '

SO FRINT O ARCPTY GOTO 10

&0 FRINT * a%36": GOTO 10

s
~
"~

Notice that the line numbers in lines 20 and 30 have not
been changed. Whenever a goto or line number follows a
string manipulation, the renum feature will not work

properly.

ERASING CHARACTERS ON THE GRAPHICS SCREEN:

Try the following program,

10 GCREEN 2,2:0L5
20 TOR N=1000 TO 1050

36 CURSOR 150,0:FRINT " Score:s "X
A0 NEXT

nOTMD

62

63

As you will have noticed, the characters written tend to
overwrite each other. After a couple of prints, you can't
read the score at all. The way to overcome this is by
using a print (HR$(5) command. This erases everything to
the right of the current cursor position. Modify the
program to that below,

10 SCREENM 2,7 r‘l")

20 FOR Mg ’)00 OLOED

FD CURSOR 1350 ,0uFRINT CHRE$H (D

40 CURSOR 130, 0:FRINMT " Scores” ;X
SO NEX

G OEND

6]

el

[

As you notice now, the print chr$(5) statement allows you
print in the same position twice. However, note that the
chr$(5) erases all information to the right of the cursor
(except sprites). Its use must therefore be limited to close
to the right hand edge, ie for displaying scores, etc,
otherwise it could erase part of your pictures or graphic
displays.

CONVERTING ORIC PROGRAMS TO THE SHGA:

Listed are the ORIC commands with the appropiate SEGA
command ;

ORIC BQUIV SEGA [For use on Text screen only]

PLOT X,Y,"#" CURSCR X,Y: PRINT"#"
[for the Sega Y(23, the ORIC Y(27]

EXPLOPE QUT127,228
FOR X=240 TO 255
air 127,X '
FOR Y=1 TO 15
NEXT: NEXT
KEY$ INKEY$
IF SCRN(H,V)< »32 TF VPEEK ((V¥*40) +HH&H3002)< >32

PAPER O:INK 7 QIR 7,0 [generally ignore]

FOR A=(46080+(ASC("'#")*8)) TO (ASC("'&")
This command sets up user—defined graphics. The equivalent
command for the SHGA is

PATTERNCHASC("'#"),"whatever the 8 data bytes were'
all the way to
PATTERNC#ASC("'&') ,"etc"

[Tt is a good idea to map out the bit patterns used as the

Sega allows only six of the eight colums to be used when
defining the character patterns.]

CURSET 100,10 X1=100: Y1=10: LINE (X1,Y1)-(X1-10,Y1+20+P),1:

DRAW —10,20+P, 1 BLINE (X1,Y1)-(X1-20,Y1425)
DRAW -20,25,0
WATT 20 FOR DE=1 TO 25
NEXT DE
GET Z$ INPUT Z$

SOME NOTES ABOUT THE GRAPHICS:

There appear to be some strange things happening when using
the graphics screen. This is due to the routines in ROM
being designed with circles etc in mind. An example of this
limitation follows,

10 SCREEN 2Z,2: CLS » COLOR 1,51,
(0,0) - ("'” 1921y ,12
0O LINE 7“: *J()f) 100)Y, L0, BmE
20 CUF:SGF\ &éy '3' COLGR 1,4
40 PRIMT "test"
S0 GOTO SO

As you probably guessed, 'test" is not printed and the background
color is ignored. This is because the routine does not erase
the previous contents of the video screen when writing new data
to it. A possible solution is to add these lines to the
previous program,

B¢

65

O DM =&HR2000: ZE=MHL4
2% GO5uUE 100
4% GATUR 110
100 FOR Y=70 TQ 90sBLINECS4,Y) -~

(2T, Yy s NEXT: RETURN

110 FOR X=&44 TO 9% BTEF 8

120 FOR Y=70 TQ 90

130 VFORE INTAY /8O MITLHEINTIX /BRI XD
+YMODB+IX, 20

LA0 NEXT: MEXT: RETURNM

This demonstrates the writing to the color attribute area of
the graphics screen. This technique should be used to add
more color onto the screen, as the graphic chip does allow 16
colors to be used in a character block (ie 8 x 8). The
computer is capable of generating color displays rivalling most
computers today, and should be comparable to more expensive
computers if programmed correctly.

LISTING PROGRAMS:

When listing Basic programs, pressing the SPACEBAR will pause
the listing. Pressing it again, the listing will continue.

HALTING THE GAMES CARIRIDGES:

Pressing RESET will halt the game, while a further press will
restart the game.

LOAD OR SAVE VARTABLES, MACHINE-CODE PROGRAMS, STRING ARRAYS EIC:

Well, we may as well go for broke on the last topic in this book.
If you have survived to this point then congratulations are in
order! By now, some of the concepts should be clicking together
and so to finally put you off the deep end, lets get into
saving or loading variables etc.

Basic Principle involved: We have already discovered that

Basic uses locations in the Reserved RAM area in order to locate
where to find the program, variables, strings etc. The LOAD
and SAVE routines look up locations &H8160 to &H8165. These
locations store the start and end address's of the Basic
program and Variable storage areas. The area of memory

between the start and end address of the Basic program is

saved to tape, but the storage area isn't. In a flash, we
discover that if we replace these start and end address's
of the Basic program with the address's for the variables,
then call the SAVE routine, the computer will save the
variables to tape for us. Having saved them to tape, if
we reset the address's to what they were previously, all
will be fine, and our program will continue on as usual.
The same principle applies to the LOAD process. Okay, so
the steps involved in designing this are,

1)
2)
3)

4)
5)
6)

Setting up the mcode routine.

Set up a machine—code routine to accomplish the task
Save the start/end address's somewhere safe

Get the variable address's and put them into where
the start/end address's of the Basic program are
stored

Call the LOAD or SAVE routine in ROM

Reset the original address's

Return back to Basic

a RFM statement.

5 REM AAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

Line 5 has as many 'A's as possible, about 250 of them.
Now the first 'A' in line five is stored at address
&HO808. Our machine—code routine can thus be poked into
address 8H9808 onwards (though the length of owr routine
cannot exceed 250). The pointers that we pick up from
locations &H8160' must be saved somewhere safe, so we will
store them as follows,

&H9808/9 Poke this with start address to be saved
&HO80A/B Poke this with end address to be saved
8H980C/D Store 8H8160/1 here

&HO8CF/F Store &H8162/3 here

&H9810/1 Store &HB164/5 here

&H9812/3 Store &H8166/7 here

&HO814" Machine code routine

Lets hide the machine—code in

66

67

The actual mcode routine written in machine code,

ENTRY
SAVE

ENIRY

LD HL, (8160)
LD (980C),HL
ID HL,(8162)
LD (980E),HL
1D HL, (9808)
1D (8160),HL
1D HL, (980A)
1D (8162),HL
CALL 7A69
LD HL, (980C)
LD (8160),HL
LD HL, (98CE)
LD (8162),HL
RET

1D A,00

ID (8242),A
LD HL,(8160)
LD (980C),HL
LD HL,(8162)
ID (980E),HL
LD HL, (8164)
1D (9818),HL
LD HL, (8166)
ID (9812),HL
LD HL, (9808)
1D (8160),HL.
LD HL, (980A)
1D (8162),HL.
CALL 78FF
LD HL, (980C)
1D (8160),HL
LD HL, (980E)
LD (8162),HL
LD HL, (9810)
1D (8164),HL.
LD HL, (9812)
1D (8166),HL
RET

;save Basic start
;save Basic end
inew start

snew end
;call save routine

;restore Basic start

;restore Basic end

;zero filefound flag
;save Basic start
;save Basic end
;save string start
;séve string end
;new start

snew end
;call load routine

;restore Basic start
;restore Basic end
;restore string start

;restore string end
;return to Basic

The LOAD part of the routine is slightly different, because the
string pointers are altered by the load routine. Thus they are

saved, and later restored after the load has executed. ILocation

82A2 is stored with zero this tells the load routine to load
the first file it encounters.

The machinecode is now converted to DATA statements, and poked
into the 'A's that make up line 5, eg

FOR X=8H9808 TO &H9808+number of data bytes
READ A:POKE X,A: NEXT

Once this is achieved, the routines can be called and executed.
This has been used in the following three programs written
by the author,

ACOOUNTS RECEIVABRLE
ACCOUNTS PAYABLE
MATLING LIST

The major portion of the book is now over. Finally, the
appendix lists some games and a utility program that you the
reader can type into your SHGA computer. I hope that they
provide you with hours of use, as well as the information

in this book.

68

APPENDIX

This appendix lists three Basic games for a LVIITA
cartridge, and a very long STARIREK program for a LVIIIB,
Appended is a PATTERN EDITOR utility program, which allows
the user to create patterns on an 8 x 8 grid, any pixel
can be set/reset, the hex values are worked out for you,
and it shows you a normal size, and expanded size of the
character you make up.

The Basic games are; CROSSROADS, ALIEN ATTACK, ONE ARMED BANDIT.

69

70

CROSSROALS

19

20
38
40
50
60
%)

121%)
515

1006
110
120
130
140
150
160

170
180

190
200
210
220
230
240
230
260
270

LVITTA/B

HI=Q:SCREEN1, 1 :CLS:GOSUB 330 :G0OSUB
460

GOSUB23@

U=14:H=13:6G0SLUB 220

CURSORH, U:PRINT" "

IFINKEY$=" "THENU=U-1

BEEP '

CURSOR@, 4 :PRINTAS$:CURSORG, 6 :PRINTBs

CURSORG, 10 :PRINTB$:CURSORG, 12 :PRINT
A$
IFUPEEK(UX48+H+&H3C0B3+2) <O 32THEN160

CURSORH, U:PRINTCHR$(253);
L1$=LEFT¢(A%$,1):R1$=RIGHT$(A%$,35)
L2$=LEFT$(B$,35) :R2$=RIGHT$(BS%, 1)
A$=R1$+L 1$:B$=R2$+L 2%
IFU=2THEN210

GOT049
FORX=1T08:SOUND1, 200, 19 :NEXTX:
SOUNDO@ : [FML>@THENML=ML-1:GOTO 30
IFSCO>HITHENHI=SC
CURSORSB, 20 :PRINT"Press any key'";:
PRINT" to continue"” :FORX=100808T0500
STEP-S:SOUNDI1, X, S:NEXTX :SOUNDO

IF INKEY$=""THEN1S0Q

GOTO 20 :

BEEP :SC=SC+10:GOT038
CLS:PRINT"High "3 HI, "Score " ;SC
CURSCOR 8,4 :PRINTCHR$(1)+A$

CURSOR ©@,6:PRINTCHR$(2)+B$

CURSOR B, 10:PRINTCHR$(5)+Bs
CURSOR B, 12:PRINTCHRS$(6)+A$
CURSCR H,V:PRINTCHR$(233);

2808 FORA=1 TO ML :CURSOR A, 1:PRINT CHRS$
(253) 5 "NEXT :RETURN

2386 SC=0

300 A$="x7 x7 X7 z? 7 X

31@ B$_—_“'..‘ L] P LA t

320 ML=S:RETURN

338 REM User defined graphics

348 PATTERNCHHBO, "'0BQOBBA/QF 3FACRAQ"

350 PATTERNCH&HZ2?, "Q0B0BBFBFEFEOGBQO"

368 PATTERNCH&H3F, "0000BBRFBFCFFBE0Q"

370 PATTERNCH&H?2S, "00BBOBB31F3F 1860"

380 SCREEN 2,2:CLS:CURSOR 60,95

390 COLOR1,2,(08,08)-0255,191),2:PRINT
CHR$(17);

480 FORXX=1T018:READC,LS

410 COLORC,?2

420 PRINTLS$; :NEXTXX

430 FORY=1 T0O 3:FORX=8B0 TO 1080 STEPS
SOUNDL, X, 1@ :NEXTX :NEXTY

448 pDATA 1,"C",14,"R",72,"0",10,"S", 4,
"SY,15,"R", 13,0, 12,"A", 11, "0",9,
g

450 SCREEN 1,1 :RETURN

460 REM INSTRUCTIONS

470 CLS:PRINT"Welcome to CROSSROADS. "

480 PRINT:PRINT" The object of the gam

e is to cross”

- 4390 PRINT"the road without being knock

ed down”

500 PRINT"by a truck or car. You hawve

S lifes"

3518 PRINT"and move upwards by pressing

the !
520 PRINT™ SPACEBAR

71

72

230 PRINT:PRINT"Good luck,..(press any
key Lo play)"”

540 IF INKEY$=""THENS40

3350 SOUNDO :RETURN

ALTEN ATTACK TVITTA/R

1@ GOSUB 1808:G0OTO 170

28 IF FL=B THEN FX=5X:FY=]78

30 FL=1:FY=FY-4

4@ SPRITE 2,(FX,FY),2,3

58 IFFY<25THEN?®

68 GOTOSQ

78 IFFX=TRTHENGOSUB!00

80 IFFY<1S THEN FL=0:SPRITE 2, (FX,192)
253

96 RETURN

100 R=R+18:ClLIRSORR+5,08.:C0LOR 13,1 :PRIN
T CHR$(25@);:1FR>8BTHENR=Q ‘
119 0UT127,228:FORXX=24BT0255:0UT127, X
X :FORNP=1TOS :NEXT :NEXT :RE TURN

120 1F INKEY$="X" THEN SX=SX+SZ:IF 3X>
SO THEN SX=SU

130 IF INKEY$="2" THEN SX=SX- SZ:I[F SK<
SUTYEN SX=SU

146 IF (INKEY$="S") AND (FL=0) THEN FX
=SX :60SUB20

150 1F Fl=1 THEN GOSUB20

160 UPOKE SA, SX :RETURN

170 FOR TR=TS TO TT STEP TU:GOSUB 120:
UPOKESS, TRINEXT:GOTO 170

180 SCREEN 2,2:CLS:COLOR 8,1,,1

199 PATTERNSH1, "0OCANBICIEVEFFAR"

200 PRTTERNS#0, "000000 1818 EFFFF "

210 PATTERNSH?, "00000043134180000"

220 SX=170:SPRITE @,(5%,1782,0,4
23¢ SPRITE 1,00,20),1,11

240 TU=2:TS=0:TT=245:52=2:5U=245:5!1=8

258 FL=0:SA=&H3BO1 :SB=&H3BBS

26@ CURSOR 110,0:PRINT "ALIEN"; :RETURN

ONE ARFD RANDIT LVIIIA/B

1@ SCREEN 1,1:CLS:SCREEN2,2:CLS

28 COLOR 1,14,(0,083)-0255,131),4

30 GOSUB 103Q:G0SUB 1310

40 MB=100:CL$=CHR$(S) :HL$=CHR$(239)

50 PRINT CHR$(12):DIM C1(6)

B0 C1(083=6:C1(12)=12:C1(2)=4:C1(3)=3

/70 C1(4)=15:C1(5)=14

89 PRINTY" One Armed Bandit."

98 PRINT CHRs(186)

190 PRINT" A simple game of chance,.”

118 PRINT" Payoff..."

128 CURSOR 8,38 :PRINT"One " ;:SPRITE 1,
(28,48),0,6 :CURSOR 35,50:PRINT" pays $
18.00"

13@ CURSOR 8,68 :PRINT"Two " ;:SPRITE O,
(28,58),1,12:CURSOR 35,608 :PRINT" pays

$20, 00" .

140 CURSOR 8,78 :PRINT"One ";:SPRITE 2,
(28,68),2,5:CURSOR 35,70:PRINT" pays $
200.00" '

150 SPRITE 3,18,78),3,15:5PRITE 4, (18,
78),3,13:SPRITE 5,(28,783,3,15:CURSOR

35,80 :PRINT" JACKPOT $1000.00" :PRINT

168 COLOR 5:PRINT"Press any key to pla
v,

170 IF INKEYs$="" THEN GOTO 170

180 GOSLB 1118

198 CURSOR 20, 180 :COLOR1S:PRINTCHR$(S)
V'Money = $7;CHR$(23);:M3:COLOR 2

74

208 SPRITE ©,158,43),5,C

210 SPRITE 1,088,43],5,C

228 SPRITE 2,(110,433,5,C

230 COLOR 1

248 CURSOR 20, 150 :PRINT "Press " ; COLO

R 8:PRINT"SPACEBAR" ; "TOLOR 1:PRINT" to
Play" :COLOR 2

250 IF INKEY$<>CHR$(32) THEN GOTO 258
269 M2=MB-10

278 CURSOR 20, 189:C0L0OR 15:PRINTCHRS$(S
) " Money = $ViCHR$(29) ;M0 :COLOR 2

280 GOSULB 710

290 GOSLB 500 :G0SUB 5780 :G0SUB 640

388 IF RI=R2 AND R1=R3 THEN GOSUB 360:

GOTO 340:REM Jackpot

312 IF RI=1 AND R2=1 OR R1=1 AND R3=1

OR R2=1 AND R3=1 THEN GOSUB 430:6G0T0 3

a9

320 [F R1=8 0OR R2=B DR R3=8 THEN GOSUB
400 :GOTO 340

3380 IF R1=2 OR R2=2 UR R3=2 THEN GOSUB
460

340 REM End of 1loop

358 GOTO 194

360 REM Jackpot

378 IF RI1=3 THEN M3=M2+1800:GOTC 330
380 RETURN

390 BEEPZ2:COLOR 4 :CURSCOR 188,40 :PRINT"
Jackpot " :BEEP2:0UT127,228:F0OR DE=240 T
0 255:0UT127,BE:FOR DF=1 TO 153:NEXT:NE
XT .CIURSOR 180,40 :COLOR 14 :PRINT CHRs$(S
) :COLOR 2:RETURN

400 REM One Cherry

410 MB=MB+10

4280 BEEP2:COLCR 4:CURSOR 180,40 :PRINT"
Cherry ":BEEP2:0UT127,228:FOR DE=240 T
0 255:0UT127,DE:FCOR DF=1 TO 15:NEXT:NE
XT:COLOR 14 :CURSOR 188,48 :PRINT CHR$(S
) :COLOR 2:RETURN

438 REM Two Apples

440 MB=MQ+20Q

4590 BEEP2:COLOR 4:CURSOR 188,40 :PRINT"

App les ":BEEP2:0UT127,228:F0OR DE=249 T

0 255:0UT127,DE:FOR DF=1 TO 15:NEXT:NE

XT:COLOR 14 :CURSCOR 188,409 :PRINT CHR$(5
) :COLOR 2:RETURN

460 REM Mystiery

470 MP=INT(RND(1)%X189)+1

480 MO=MB+MP

490 BEEP2:COLOR 4:CURSOR 178,40 :PRINT"

Mystery $" CHR$(29);MP:BEEP2:0UT127,22

4:FOR DE=240 TO 255:0UT127,DE:FOR DOF=1
TO 39 :NEXT:NEXT:COLOR 14:CURSOR 179,4

B:PRINT CHR$(S):COLOR 2:RETURN

500 REM ROW 1 ROTATE

519 FOR X=1 TO 16

520 Y=INT(RND(1)X6)

S38 C=C1(Y)

540 SPRITE 9,(58,43),Y,C

550 BEEP:NEXT:R1=Y

56@ RETURN

.5/70 REM ROW 2 ROTATE

588 FOR X=1 TO 16

5390 Y=INT(RND(1)X6)

600 C=C1(Y)

61@ SPRITE 1,(88,43),Y,C

620 BEEP:NEXT:R2=Y

639 RETURN

640 REM ROW 2 ROTATE

6509 FOR X=1 T0 16

668 Y=INT(RND(I1J)X6)

670 C=C1(Y)

688 SPRITE 2,1118,43),Y,C

6390 BEEP :NEXT:R3=Y

789 RETURN

718 REM Handlie pull

/20 COLOR 14

/30 COLOR 14

/40
/50
/60
270
/80
/390
800
810
320
830
840
850
360
870
880
8380
300
810
920
330
340
950
360
370

CURSOR 146,38
CURSOR 146,46
CURSOR 146,54
COLOR 2

CURSGOR 146,78
CURSOR 146,86
CURSOR 146,94

CLURSOR 146, 102:PRINTHL$

CURSOR 146,62
COLOR 2

CURSOR 146,78
CURSOR 146,86
CURSOR 146,94

CLIRSOR 146, 182 :PRINTHLS$

COLOR 14

CURSOR 146, 182 :PRINTHLS

CLRSCR 146,94
CURSOR 146,86
CURSOR 146,./8
COLOR 2

CURSOR 146,62
CURSOR 146,54
CURSOR 146,46
CURSOR 146,38

PRINTHL S
PRINTHL$
PRINTHLS

SPRINTHL S
PRINTHL S
(PRINTHLS

PRINTHL$

SPRINTHLS
PRINTHL®
*PRINTHL$

(PRINTHL$
PRINTHLS
‘PRINTHLS

:PRINTHLS
*PRINTHLS
PRINTHLS$
:PRINTHLS

980 OUT 127,224 :FOR DE=248 TO 255

9380 OUT 127,DE:FOR DBF=1 TO 13

18080 NEXT :NEXT

1018 RETLURN

10206 STOP

10380 PATTERNSHG, "2080B66FFFF2E3C18" :REM
Heart :

1040 PATTERNSH1,"840876FFFF/E3CBB" :REM
Appie '
1050 PATTERNSH?Z, '38444408181680810" :REM
Mystery

1860 PATTERNSH3, "2473A5A42E25A57E" ‘REM
Doilars

1870 PATTERNSH4, "28000QFFFFROBBBB" -REM
Bar

1980 PATTERNSH#S, "20000000000080V00Q" :REM
Blank

1030 PATTERNSHG, "7EB8193831391383817E" :REM
Copyright

1188 RETURN

1118 CLS:COLOR 2,14,(8,8)-(255,1381),7
1120 PRINT

1130 PRINT" RET-SE

1148 PRINT" Y228%

1158 PRINT® T522¢%

1160 PRINT" "SLEFT$(Z23%,17)

1178 PRINT® ";24%

1188 PRINT® "i24%

1188 PRINT" TiE3%

1288 PRINT" "5ES%

1210 PRINT™ ",26%;CHR$(2238)+CHR$ (23
6)+CHR$(238)

1220 PRINT" E7%

1238 SPRITE 6,(1895,78),6,1

1248 PRINT" ";26%

1258 PRINT™ "3 CHR$(2233)+CHR$(1441+C

HR$(144);" April 1984" ;CHR$(144)+CHRS(
1443 +CHR$ (22393

1268 PRINT" "SLEFT$025%,17)
1270 PRINT" YSLEFT$025%,17)
1280 PRINT" ";CHR$(143)+LEFT$(Z23%,1”

J+CHR$(158)

1298 COLOR 1:CURSOR 42,20:PRINT" Sega
Jackpoti " :COLOR 2

1300 RETURN

13190 REM Set up strings

1320 21$="":22¢="":238="":24¢=""
1330 25$="" :26¢="":127¢=""

1340 FOR AA=1 TO 17:READ AZ

1358 21$=2]1$+CHRS$(AR)

1360 NEXT

1370 FOR AA=1 TO 17:READ AZ

1380 22$=22$+CHRS$(AZ)

1390 NEXT

77

78

1400 FOR AA=1 TO 28:READ AZ
1410 23$=23$+CHR$(AR)

1420 NEXT

1430 FOR AA=1 TO 28:READ AZ

1440 24$=24$+CHR$ (AR)

1450 NEXT

1460 FOR AA=1 TO 20:READ AZ

1470 25$=25$+CHR$(AZ)

1480 NEXT

1499 FOR AA=1 TO 17:READ AZ

1500 26$=26$+CHRS (AR)

15180 NEXT

1528 FOR AA=1 TO 18:READ AZ

1530 27$=27$+CHR$AZ)

1540 NEXT

1558 RETURN

1568 DATA 143,229,229, 229,229, 229,223,
228,229,229, 229,229, 229,229, 229,229, 15
2

157@ DATA 229,32,32,32,32,32,32,32,32,
32,32,32,32,32,32,32, 229

1588 DATA 229,229,229, 229,229,229, 229,
229,229,229, 229, 229, 229, 229, 229, 229, 22
3,32,32,239

1599 DATA 229,229,32,32,32,229,229, 32,
32,32,229,229,32,32,32,229,229,32,32,2
30

1600 DATA 223,144, 144,144,144, 144, 144,
144,144,144, 144,144, 144,144,144,144,22
9, 229,32, 230

1619 DATA 229,144,144,32,32,32,32,32,3
2,32,32,32,32,32,144, 144,229

1620 DATA 229, 144,144,32,66,46,66,114,
111.119,11@,32,32,32, 144, 144,229, 229

STARTREK LVITIB

5 REM AAARAARAAAAAARARARAAAAAA

190 RESTORE 5020

30 PATTERNC#254, "2830FCCC/830CCRB" :PAT
TERNC#135, "1F1F1FQ00000000Q"

40 DEF FNACBY)=INTC(RNDC1)XBYJ)+1

50 E$=CHR$(250) :K$=CHR$(254) :B$=CHR$(2
47):5$="X":G0SIB S00Q:RESTORE 70

60 DIMS(8,8),R(6),D(8,8),J(19),G(8,83,
CN$(4) :CL$=CHR$(236):SR$=" .,....... "
ORA=BT04 :READCN$ (A :NEXT

65 S5S$=",X%X"+CHR$(254)+CHR$(247)+CHR$(2
593

70 DATA Green,Yel low, XXXREDXXX,Docked,
88 DU=6:FORA=1TO6 :READDUS$(A) :NEXT

990 DBATA Ion Drive,S.R Sensors,L.R Sens
ors,Pulsar Ctrl,Photon Tubes,Damage Ct
Tl

100 CC$="CSLPTDGI" :CC=8

119 GOSUB3040

120 K1=FNA(15)+180:S51=FNA(148)+150:B1=F
NA(9) :C9=1:FORI=1TO08:FORJ=1T08:G(I,J)=
—1:NEXT:NEXT:D1=FNA(19393)+2000/10%10:0
3=40:D2=D3+D1 :GOSLB3Q60

130 FORI=1TO8:FORJ=1T08:S(I,J)=0

140 NEXT:NEXT:L1=0:.2=0:6G0SUB3130:DE=1
2

1590 FORI=1TOINT(S!1):DE=DE+! :IFDE>255TH
ENDE=10

168 SPRITE 10, (DE, 180),8,2:A1=FNA(8] :A
2=FNA(8)]

179 IF S(Al1,A2)>8 THEN 160

180 S(A1,A2)=SCAl,A2]+1

190 NEXTI

210 FORI=1TOK!:A1=FNA(B) :A2=FNA(B)] :S(A
1,A2)=S(A1,A2)+100

79

80

215 NEXT :G0SlIB3160©

220 FORI=1TOBI1:A1=FNA(B) :A2=FNA(B) :S(A
1,A2)=S(A1,A2)+18 :NEXT

230 E1=FNA(8) :E2=FNA(8) :E’=FNA(8) :E8=F
NA(8) :P=30R0:C1=08:T1=10:G0SUB’30

2490 SCREEN1,1:CLS:COLORI1,11

2580 PRINT"Orders: Stardate =";D1:PRINT
‘PRINT" As commander of the United Sta
rship PEGASUS,; your mission is to rid
the galaxy ot the deadly Cygon’s.":
PRINT" To do this, you must destroy th
e Cygon invasion force of ";K1;" B
attle"

260 PRINT"cruisers. You have ";D3;" so

lar days to complete your mission.”

2780 PRINT"The Pegasus is currently loc

~ated at Quadrant ";E2;"-";E1:PRINT"S

ector "SE8;;M~"3EZ :PRINT :GOSLIB49Q00Q :PR
INT"Press I tor instuctions.”

280 Us=INKEY$:[FU$=""THEN280

290 IFU$="I"THEN 3170

300 SCREENI1,1:CLS:GOSUB2/60

310 GOSUB166@

320 SOUNDO :CLURSORQ, 22 :PRINT"Your Comma
nd Captain ?";:Y=2

338 U$=INKEY$:IF Us$="" THEN 330

34@ IFU$=CHR$(13)THENGOSLB2/60:GOT0320

350 I[FCA=1THENCLS :GOSUB 2760

360 FORA=1TOCC:IF U$=MID$(CC$,A, 1) THE
NC2=A-1:G0T0330

370 NEXT

380 GOTO 330

388 IFC2<>B6THENS20

400 CLS:PRINTCL$;"Galaxy map," :PRINT"

418 CA=1:CB=0:PRINT" ";:FORI=1TO8:PRIN
T Y5315 :NEXT:PRINT:PRINT" "y:C2=31:

GOSUB/80Q:FORI=1TO8:PRINTI;

420 FORJ=1T08:IF G(I,J)<8@ THENPRINT":

- ";:60T05109

430 QW=G(I,J):IFQW<KIOTHENQZ2$="00"+STR$
(QW) :GOT0O460

440 IF QW>9 AND QW<K189 THENQZ$="0"+STR

$(QW) :GOTO460

450 Q2$=STR$(QW)

460 W2s$=""

470 FORQW=1TOLEN(QZ$):IFMID$(Q2%,QW, 1)

=" "THEN490

480 W2$=W2$+MIDS(Q2$,QW, 1)

490 NEXT :Q23$=W2Z2¢

SO0 PRINT":";Q2%;

519 NEXTJ::PRINT" :" ::NEXTI :PRINT" "3:G
OSLIB’8Q :PRINT :PRINT"Pegasus currently
at " ;E2;5;"-"35E1:GO0T0320

5280 ONC2+1G0OTO 1320,06509, 1049,2190, 2370
y 560,530, 3170

538 CLS:CA=1:CB=0:PRINTCL$;"Your choic
es of command are:":PRINT"C - Course d
itect ive" :PRINT"S - Short range sensor
scan'

548 PRINT"L - Long range sensor scan':
PRINT"D - Damage control veport" :PRINT
"P - Fire Mega Pulsar’s"

550 PRINT"T - Fire Photon torpedoes ":
PRINT"G - Galaxy map" :GOT0320

560 CLS:PRINTCL$;"Damage Control Repor
t. " PRINT" "

570 IF R(61<@ THENS9Q

588 PRINT"Device State of repai
7" :FORC2=1TO6:PRINTDU$(C2),R(C2) :NEXT:
GOTO 640

580 TP=FNA(3):CURSORB, 15:0ONTPGOTO600, 6
10,620

600 PRINT "Engineering reports, " :GOTOH6
30

82

610 PRINT "lst Officer reports,":GOTO6
30

620 PRINT "Navigation reports,”

630 PRINT"Damage control not available
640 FORQW=1TO0250:NEXTQW:GOTO 310

650 GOSUB660Q:GOT0310@

660 CLS:PRINTCL$;"Short Range Sensor S
can. " iPRINT" i

670 IF R(21)<@ THENCB=0:FORA=BT0O./ :CURSO
RO, A+S:PRINTSR$; iNEXTA:PRINT :PRINT"Sho
rt range sensors damaged..." :RETURN
688 IFPQ=1THENG(E1,E2)=S(E1,E2)

6390 CB=1:G0OSUB’S0

700 CURSOR®G,4:PRINT" 12345678"

7189 FORA=QTO?

720 CLRSORG,A+S:PRINTSR$;" ";A+1

738 NEXTA

/40 FORI=1T08

750 FORJ=1T08

/60 IF DCI,J)<>08 THENCURSORJ; I+4:PRINT
MID$(SS$,D(I,J)+1,13;

778 NEXTJ:NEXTI:CURSORB, 16:PRINT"Secto

f o USEBMTERSY " :RETLRN
786 FORI1=1TOC2:PRINT"="; :NEXTI1 :PRINT
:RETLIRN

730 IF L1=El THEN 810

800 GOTO 820

810 IF L2=E2 THEN RETURN »

820 L1=E1:L2=E2:FORI=1T08:FORJ=1T08:DC(
[,J)=0:NEXTJ:NEXTI:DC(E”,EBI)=4:PQA=1

830 [F E1<1 THEN E1=8

8490 IF E1>8 THEN El1=1

850 IF E2<1 THEN EZ2=8

868 IF E2>8 THEN E2=1

870 IF S(E1,E2)-INT(S(E1,E2)-/18)%x10=0

THEN 3928

880 FORI=1TOSCEl,E2)-INT(S(El,E2)-183X%
10

880 E3=FNA(8) :E4=FNA(8)

909 IF D(E3,E4)<>0 THEN 830

919 D(E3,E4)=1:NEXTI

920 IF INT(SCE1,E2)-/10)-INT(SCE1,E2)/1
POlIXx10=0 THENSYQ

930 FORI=1TOINT(SCE1,E2)/10)-INTC(SCEL,
E2)/1003%10

940 E3=FNA(8) :E4=FNA(S8)

950 IF DC(E3,E4)<>0 THEN 940

860 D(E3,E4)=3:NEXTI

970 IF INT(S(E1,E2)-100)=0 THEN1QB20
980 FORI=1TOINT(S(E1,E2)-100):J(1)=300

9380 E3=FNA(8) :E4=FNA(8)

1000 IF D(E3,E4)<>@ THEN 980
1010 D(E3,E41=2:NEXTI

18280 IF CB=1 THEN GOSUB 660
1830 RETURN

1040 CLS:PRINTCL$;"Long Range Sensor R

eport." i:PRINT"
185a IF R(3)<>B THEN TP=FNA(3):GOTO 10
70

1960 GOTO 1120

1870 ONTPGOTO 1889, 1090, 1100

19080 PRINT"Navigation reports the Sens
ors are ":GOTO 1110

1290 PRINT"1st Officer reports the Sen
sors are ":GOTO 1110

1190 PRINT"Engineering reports the Sen
soTs are "

1110 PRINT"out Captain ";UA$:GOTO 310

1120 PRINT"Long Tange scen on Quadrant
"3EZ25"~-"35E1L

1130 PRINT:C2=13:G0SLIB’80:FORI=E1-1TOE

83

84

1+1:FORJ=E2-1TOE2+1

1140 IFIKITHEN1310

1150 IFI>8THEN1310

1166 IF J<1 THEN1300

1170 IF J>8 THEN1300

1180 G(I,J3=S(I,J)

1196 QW=SC(I,J) :IFQU<IBTHENQA$="80"+STR
$(QWI :GOTO1220

1200 IF QW>9 AND QW<1P@ THENQA$="0"+ST
R$(QW) :GOTO1220

1210 QA$=STR$(QW)

1220 Q2¢=""

1238 FORQX=1TOLENCQAS$)

1240 IFMID$(QA$,QX, 1)=" "THEN1260

1250 Q2$=0Q02$+MID$(QAAS$, A%, 1)

1268 NEXTAX:QA$=Q2$%

1270 PRINT":";QA$;

1280 NEXTJ:PRINT": "

1280 NEXTI :GOSUB”80:G0T0319

1380 PRINT": - "3:G0T01280

1310 PRINT": - : ~ : — :":GOT01290
1320 A=544:G0SLUB2700

1330 CURSORQ, 14:PRINT"Course’ ;:G0SUB28

PO :C2=N:IFDD=1THEN310

1348 P1=8:1F R(1)=0 THENI1370

1350 P1=,2:IF R(1)<-3 THEN1370

1360 PI1=INT((4+R(1)J)%2)-10

13780 IFPIKITHENPZ$="0"+STR$(P1)

1380 P2$=STR$(P1):PY$="":FORAZ=1TOLENC

P2$)

1390 IFMID$(PZ$,AZ,1)=" "THEN1410

14600 PY$=PY$+MID$(PZ2$,AZ, 1)

1418 NEXTAZ:P2$=PY$

1420 CURSOR@, 15:PRINT"Light Speed (O -
"SP2e 5")" :GOSUB2800 : IFDD=1THEN31Q
1430 C3=N:IF C3<Q OR C3>8 THEN1370
1448 IF C3<=P1 THEN1460

1430 CLIRSORO, 16:PRINT"Engineering tepo

rts"PRINT"Ion Drive is damaged...":PR

INT"Max Light speed=";P2$:G0T01370
1460 IFC3<1THEN1480

1470 FOR XU=C3%100 TO C3%4B0 STEP 5:S0
UND1, XU+1@, 15 :NEXTXU

1480 P=P-16XC3-5:N1=INT(8%C3):IFN1=0TH "
EN1IB1O

1480 N2=-COS(C2%,08174533):1F ABS(N2)<=
.01 THENN2=0

1509 N3=SIN(C2%.0174533):1F ABS(N3)<=.
81 THENN3=0

1510 AU=1 :AW=N1

15290 E3=E/:E4=E8:P1=INTCE3+N2+.4):P2=1
NTCE4+N3+.4):E7=P1 :E8=P2

1539 IF P1<1 THEN13S70

1540 IF P1>8 THEN1970

15580 IF P2<1 THEN139%90

1368 IF P2>8 THEN13930

1570 IF D(P1,P2)<>08 THEN2010

1580 D(E3,E4)=0:D(P1,P2)=4

1590 IFCB=1THENCLIRSORG,; 16:PRINT"Sector

II;E8;II:II;E7;H M
1600 AU=AU+1 IFAU<C=AW THEN 1520
1610 Q=PP

1628 D1=D1+1:FORI=1T06:IF R(I1)=0 THENI1
650

1630 RCIJ)=R(IJ)+1

1640 IF RCIJ>@ THENR(I)=0
1650 NEXTI :GOT02020

1660 FORI=E?-1TOE?+1

1678 IF I<1 THEN1740

1680 IF I>8 THEN1740

16990 FORJ=E8-1TOE8+1

1760 IF J<1 THEN1”30

1710 IF J>8 THEN1730

1720 IF D(I,J)=3 THEN1780
1730 NEXTJ

1748 NEXTI

1750 C1=0:1FPQ=BTHEN1770

85

86

1760 IF S(E1,E2)>=180 THEN Cl1=2:G0T018

20

1770 [FP<=500 THEN C1l=1

1780 GOTO 18060

1799 C1=3:P=3000Q:T1=10:FORI=1T06:R(I1)=

QINEXTI

1880 IF C1=0 THEN 1820

1818 GOTO 1844

1820 FOR I=1TO6:IF RCIJ)<® THEN Cl=1

1830 NEXTI

1840 RETURN

1850 C2=RNDC(1):IF C2<.25 THEN1910

1860 1FC2<.8 THEN196@

1870 CURSORQ, 16:PRINT"Space Storm "

:IFC1<3THEN18390

18880 PRINT"Starbase Shields protect th

e ship2":G0T0O13960

1890 C2=FNA(DUJ:PRINTDUS$(C2);" Damaged
":R(CC2)=RCC2I-5S*%RNDC1):IF C2<&

2THEN 139608

1900 CB=@:GOTC 196Q

1910 FOR I=1 TO 6

1920 IFRCIJ=OTHEN NEXTI

1938 GOTO 1960

1940 PRINT"TRUCE " ;:PRINTDUS$(I);" Repa

it status has improved" :R(IJ=RCIJ+2%RN

DC1)

1950 IF RCI)>0 THEN RC(I)=0

1960 GOSLB1660:RETLRN

1970 S2=SGN(P1-1):E1=E1+S2:E?=INT(P1J)-

8%XS2:L1=E1+1

1980 IF P2>=1 AND P2<=8 THEN2000

1390 S2=SGN(P2-1):E2=E2+S2:E8=INT(P2)-

8XS2:L2=E2+1

2000 GOSUB/90 :CURSORA, 15:PRINT"Quadran

L' SE25" 2" 5EL ":G0T01580

2010 E7=E3:E8=E4:CIURSORQ, 17 :PRINT"Pega

sus blocked at" ;INT(P2);"=";INT(P1):BE

EP:GOT01620

2020 GOSLIB1660:G0SIIB185@ :GOSLIB2@SR:IFP
<(BTHENZ2690

2030 IFD1>D2THEN2679

2040 GOTO310

2850 IFPQR=BTHEN2180

2060 IF S(E1,E2)<100 THEN2180

2070 IFC1<>3THEN2039

2082 GOSUB1880

2090 G=1:H=B:FORI=1TOS(E1,E2)-/100

2100 H=H+1:IFH{(=8THEN2120

2110 H=1:G=G+1:IFG>8THENG=0

2120 IF D(G,HJI<>2 THEN2106-

21308 Q1=G-E7:02=H-E8:04=SAR(ABS(Q1XQ1+
Q2+Q@2))+. 1:PS=INTCCRNDC1J)XABSC(JC(II—-11)
J:JCIJ)=JCIJ)-P3:IFC1=3THEN2170 _
2140 P6=P5/D4 :P=P-P6:CURSORD, 18 :PRINT"
Pegasus Hit ":PRINT"CYGON at Sector";H
V=" 3GIFPBCIAOTHEN21279

2150 A1=3-INT(P6-/10Q):IF FNA(AL1lI<> 1 TH
EN2170

2160 C2=FNA(DU) :PRINTDU$(C2) ;" Has sus
tained DAMAGE" :BEEP2:R(C2)=R(C23-(P6/4
2IXRNDC1) :IFC2=2THENCB=0

2170 NEXTI:IFP<=@THEN2680

2180 RETURN

2190 CLS:PRINTCL$;"Megea Pulsar’s,'":PRI
NT "= "

2200 IF R(43<0 THENCLIRSOR@, 15:PRINT"P
vlsar’s are in need of repair...":GOTO
310

2210 CLURSOR®Q, 15:PRINT"Putsar’s ’LOCKED
' on target"

2220 PRINT"Energy awvailable:";INT(P):P
RINT"Number of units to {firvre";:GOSLB28
Q0 :[FDD=1THEN1620

2230 C2=N:IF C2>P OR C2<@ THEN2220
2240 GOSUB 2980

88

2250 P=P-C2:Q=PP:IF S(E1,E2)<100 THEN2

350

2260 P5=C2/INT(S(E1,E2)-100) :G=0:H=1:F
ORI=1TOS(E1,E2)/100

2260 P5=C2/INT(S(E1,E2)-108):G=0:H=1:F
ORI=1TOS(E1,E2)-100

2270 H=H+1:IFH>=39THENH=1

2280 G=G+1:IFG>=9THENG=0

2290 IF D(G,H)>2 THEN2270

2300 Q1=G~E?:Q2=H-E8:IF D(G,H)<2 THEN2
270

2310 D4=SQR(A1%Q1+82%Q2) :P6=P5/D4:J(I])]
=J(I)-P6:CURSORB, 19:PRINT"CYGON at";H;
TGt hit"rIFJCII>OTHEN2340

2320 KD$=KD$+K$:G0OSUB2900 :CURSORG, 20 :P
RINT"Destroyed ";KD$

2330 FORI2=1+1TOS(E1,E2)7100:JCI12-1)=J
(I2):NEXTI2:S(E1,E2)=S(E1,E2)-100:K1=K
1-1:D(G,H)=0:I=1+1:G(E1,E2)=S(El,E?2)
2340 NEXTI

2350 IFK1=0THEN2660

2360 GOSLUB2050:G0T0310

2370 CLS:PRINT CL%$;"Photon Torpedoes.,"
SPRINT" -

2380 IF R(53<>8 THEN PRINT:PRINT" Out
of order":GOTO 318

2390 IFT1<=@BTHENPRINT:PRINT"Torpedoes
all fired.":GOTO 310 ,

2490 GOSUB 270Q:PRINT “Torpedo Course"
1 :GOSUB 2800:1FDD=1THEN310

2410 C2=N:T1=T1-1:N2=-C0S(C2%.01743533)
:IF ABS(N23)<=.01 THEN N2=0

2420 N3=SIN(C2%.8174533) :IFABS(N3)<=.9
1 THENN3=0

2430 G0OSUB23920

2440 P1=E7:P2=E8

2450 P1=P1+N2:P2=P2+N3

2460 IF P1<.S THEN 28650

2470 IF P1>8.5 THEN 2650

2480 IF P2<.5 THEN 2650

24380 IF P2>8.5 THEN 2650

2300 IFDCINTCPI1+.4), INT(P2+.4))=0THEN2
450

2510 ONDCINT(P1+.4), INT(P2+.4)])G0OT0253
0,2580,2610

2520 GOTO 2450

2538 CURSOR @, 15:PRINT"XXX HIT STAR XX
X" :IFCB=1THENY=0

2540 IFFNA(4)<> ITHENPRINT"Burned up':G
0T02630

2550 S(E1,E2)=S(E1,E2)-1:IFFNAC1QI=1TH
ENGOSLIB2850:G0T02680

2560 GOSUB2840:[FFNAC(10)=1THEN2680
2570 GOTO 2620

2580 IFFNA(20)=1THENPRINT"Failed to de
tonate" :GOTO 2630

2590 IFFNA(38)=1THENPRINT"Cygons shiel
ds have held.":GOT02630

2600 KD$=KD$+K$:PRINT "Cygon Ship dest
royed ";KD$:S(E1,E2)=SCE1l,E2])-1080:K1=K
1-1:G0TO 2620

2610 PRINT "Starbase destroyed.":S(E1,
E2)=S(E1,E2)-10Q

2620 DCINT(P1+.4), INT(P2+.4))=0:1FCB=1
THENG(E1,E2)=S(E1,E2)

2630 IFK1=0THEN2660

2640 GOSUB2059:GOT0310 .

2650 PRINT"Torpedo missed":GOTO 2630
2660 PRINT"CYGONS DESTROYED" :END

2670 CLS:PRINT"STARDATE X TIME RUN OUT
"END

2680 PRINT"PEGASUS DESTROYED" :END

269@ END

2700 CLS:PRINTCLS$;"Navigation Dirtectiv
e, " :PRINT" "iPRIN
T:PRINT

89

90

2710 PRINT" @ ":PRINT

2720 PRINT" 315 45" :PRINT
2730 PRINT" 270 98" :PRINT
2740 PRINT™ 225 133" :PRINT
2750 PRINT™ 180" :PRINT :RETURN

2760 CA=0:G0SUB1660:CLS: PRINTCL$,'Stot
us Report.":PRINT"

2770 PRINTCL$;"Stardate ";D1:PRINTCLS$;
"Condition";" ";CN$(C1):PRINTCL%$;"Quad
rant ";;E2;"-"E1:PRINTCL$;"Sector "3
YIF R(2)>=0 THENPRINTES8;"-";E”Z?:G0T0279
2

2780 PRINT

2798 PRINTCLS$;"Energy "SINTCP):PRINT
CL$;"Torpedoes";T1:PRINTCLS$;"Cygons
"3K1:PRINTCL$;"Days left";D2-D1:RETURN

2800 Cs$="":INPUTU$:Y=2:DD=0

2810 I1FU$=CHR$(13)THEN DD=-1:RETURN
2820 N=UAL(U$)

2830 RETURN

2840 PRINT"Went NOUA" :FORDE=1T0200 :NEX
TDE : IFCB<> 1 THENRETURN

2843 SP=50:G0SUB2880 :RETURN

2850 CLS:PRINT"SUPERNQUA"

2860 FORDE=1T0200 :NEXTDE :SCREEN2,2:CLS
1SP=200:G0SJB2880

2870 RETLRN

2888 SCREEN2,2:CLS:CALL&HS8B8:FORDE=1T
OSP :DF=FNA(&H300) +&H3800 : UPOKEDF , FNA (&
HFEJ :NEXTDE :SCREEN1, 1

2890 GOSUB4000 :RETURN

2808 REM EXPLOSION

2910 0UT127,228:FORS0=240T0255:0UT127,
SO:FORSP=1TO15:NEXTSP :NEXTSO :RETLIRN
29280 REM TORPEDOES

2930 0UT127,231:0UT127,240

2940 FORSO=BT015:FORSP=192T70207

2950 0UT127,SP:0UT127,S0:NEXTSP

2960 0UT127,240+S0:NEXTSO

23870 RETURN

2988 REM PLILSARS

2990 0UT127,228

3008 FORSP=240 T0255

3810 0UT127,SP:FORSQA=1TO3:NEXT

3020 NEXT

3030 SOUND@ :RETURN

3040 SCREENI1,1:CLS:INPUT"Enter your na
me, " ;UAS$

3050 RETURN

3068 SCREEN2,2:CLS:COLORS,11,(8,0)-(25
5,191),11:COLOR 1

3070 PRINTCHR$(17):PRINT" Quality Prog
rams "

3110 COLOR6, 11 :CLIRSOR89, 83

3120 PRINT"Presents" :RETURN

3130 COLOR S5,511:MAG2

3140 CLRSOR4Q, 142 :PRINTCHR$(17);"SPACE
TREK™

3158 RETURN

3160 PRINTCHR$(16) :COLOR13,11:CLRSCR 2
Q,130:PRINT"Starring Captain'";:COLOR1?2
» 11 :PRINT CHR$(172);" ";UA$:RETURN

3170 SCREEN1,1:CLS:PRINT"Welcome to SP
ACETREK. " :PRINT" '

3188 PRINT:PRINT" The Galaxy is divive

d into 64 ":PRINT"Quadrants. Each Quad

rant is divided "

3190 PRINT"into 64 sectors. Co-ordinat

es 1-5 ":PRINT"means 1 acrtoss;,; 5 down.
The "

3208 PRINT"galaxy has wrap around feat

ures for":PRINT"ease of travel."”

3210 G0OSUB3620

9N

92

3220 CLS:PRINT"Course divectives. " PRI
NT ' "IPRINT

3230 PRINT"The PEGASUS can travel in a
ny ot the" :PRINT"eight directions as {
ol lows, " :PRINT

3240 PRINT™ g"

3256 PRINT" 315 45 "
3260 PRINT" 270 Sl
3270 PRINT™ 225 135"
3280 PRINT" 180"

32390 GOSLIB3620

3300 CLS:PRINT"Ion Drive.'":PRINT"™
"IPRINT

3310 PRINT" The PEGASUS is equipped wi
th the":PRINT"lastest Ion drive propul
sion system,”

3328 PRINT" 1 sector = ,2 "

33380 PRINT" 4 sectors = .5 "

3340 PRINT" 1 Quadrant = 1"

3350 PRINT"Use ot the Jon drive requir
es a ":PRINT"single stardate."

3368 GOSLB3620

337@ CLS:PRINT"Short Range Sensors.":P
RINT" - "PRINT

33RP PRINT" The short range sensors sc
an the":PRINT"present quadrant. The PE
GASUS looks"

3390 PRINT"like d® , the GYGONSQ, Bas

estars 4 ,":PRINT"and Stars X . " :GOSLIB
3620 '

3400 CLSlPRINT”Loﬁg Range Sensors.":PR
INT" TIPRINT

3418 PRINT" The long range sensor scan
s the 9":PRINT"closest Quadrants,"
3420 PRINT"The 1st digit = number of G
YGONS"

3430 PRINT"The 2nd digit = number of B
asestars"”

3440 PRINT"The 3rd digit = number of S

tars."

3450 GOSUB3620

3460 CLS:PRINT"Galaxy Map." :PRINT"T

— ":IPRINT

3470 PRINT" Every time the LR sensors

are used":PRINT"the galaxy map is upda

ted. " :GOSUB 3620

3480 CLS:PRINT"Mega Pulsars.":PRINT"—

"IPRINT

3430 PRINT" The pulsars are very accur
ate due to":PRINT"modern guidance syst
ems. Any amount"

3500 PRINT"of available energy may be
fired. A":PRINT"CYGON ship has up to 3
P80 units of"

.3510 PRINT"energy. " :GOSLB3620

3520 CLS:PRINT"Photon Torpedoes.'":PRIN
T "IPRINT

3530 PRINT" Torpedoes are limited to a
single" :PRINT"Quadrant. The couse is
given as per'

3548 PRINT"the Navigation directilve., 1
t a":PRINT"torpedo hits a star the sta
r can go'

3550 PRINT"SuperNowa, thus destroying
the ship." :PRINT"Should the star g0 NO
UA, your chances"

3560 PRINT"are 90x," :GOSUB3620

35708 CLS:PRINT"Damage Control." :PRINT"

" PRINT
3580 PRINT" This lists the state of re
palr of":PRINT"all devices. All repair

s are carried"

3598 PRINT"out during the game, but do
cking":PRINT"with a BASESTAR will effe
¢t :PRINT"immediate repairs.”

3680 PRINT"Docking is achieved by posi

93

tioning" :PRINT"the PEGASUS alcngside a
Basestar." :G0SUB3620

3618 GOT0530

362@ PRINT:PRINT"Press any key to cont
inue,"

3625 FORRT=1T0400 :NEXTRT

3630 IFINKEY$=""THEN3630

3640 RETURN

4000 DH=&HI11 :DF=8&H3800 :DG=8H3BAO : FORDE
=DF TODG :UPOKEDE, OH :NEXT :RETLRN

5008 FORX=8H9808TO&H38193

50180 READA:POKEX,A:NEXT :RETURN

5020 DATA &HF3, &H3E,;Q, &HD3- &HBF, &H3E, &

H80, &HD3, &HBF, &H3E, &HC8, &HD3, &HBF , &HIE

PATTERN EDTTOR LVITIA/B

19 DIM PTC16,19),BD(8),BT(8)

20 PATTERNC#208, "001008FC081080000"

38 PATTERNC#H#211, "7884B4A4A4B48478"

4@ PATTERNCH203, "208202820A8782000"

58 qY$="-—mrm— !

60 TP$="00000VVRYVBA"

70 22$=CHR$(142)+","+CHR$(143)+", "+
CHR$(208)+", "+CHR$(203)

8@ SCREEN 1,1:CLS:FOR X=1T016:FORY=1TO
18 :PT(X, Y)=32:NEXT :NEXT

38 PRINT"Pattern Editor." :CURSOR25,0:
PRINT"B.Brown ";:PRINTCHR$(211);:
PRINT" 84" :PRINT 2Y$

180 PRINT:GOSUB 740

118 X=2:Y=5

120 CURSOR 26, 2:PRINT"Expanded"”

138 CURSOR 26, 16:PRINT"Normal"

149 CURSOR 1,22:PRINT"(S)et,(ZJero";:

150

160

170

180

190

200

210

220
230
240
250
260

270
280

230
300

310

320
330
340
350

369

370
380

PRINTY, (Edrase, " ;22%;

CURSOR 1,23:PRINT"(PJ)rint shape";:
PRINT", (U)alues in Hex";

CURSOR X,Y:PRINTCHR$(144);:FOR DE=
1 TO 15:NEXT DE

A$=INKEY$:CURSCR X, Y:PRINT CHR$(PT
(X, Y));:IFINKEY$="" THEN GOTO)60
IF A$=CHR$(28) THEN X=X+2: IF X>16
THEN X=2:Y=Y+2:1F Y>138 THEN Y=3

IF A$=CHR$(23) THEN X=X-2: [F X<2
THEN X=16:Y=Y-2:1F Y<5 THEN Y=19
IF A$=CHR$(30) THEN Y=Y-2: IF Y<(S
THEN Y=13

IF A$=CHR$(31) THEN Y=Y+2: IF Y>18
THEN Y=35

IF A$="2" THEN PT(X,Y)=32

IF A$="S" THEN PT(X,Y)=223

IF A$="U" THEN GOSUB 280

IF As$="P" THEN GQOSLB 350

IF As$="E" THEN GOTO 8@

GOTO 1609
REM Print Hex wvalues of each rvow

AY=4 :AX=24
BX=2:BB=1:FOR BY=5 TO 19 STEP2:BA=
0 :GOSLIB 642 :B0.(BB)=BA:BB=BB+1 :NEXT

BB=1:FOR BE=5T0139 STEP2:CURSORI1S8,
BE :BA$=HEX$ (BD(BB)):IF LEN(BA$)< 2
THEN BA$="0"+BAS

BB=BB+1:PRINT BA$; :NEXT

RETURN

REM Print Pattern on screen

AY=4 :AX=26 :FOR AE=STO 19 STEP2:FOR
AA=2 TO 16 STEP 2

IF PT(AA,AE)>32 THEN AD$=CHR$(229)
:GOTO 388

AD$=CHR$ (32)

CURSOR AX,AY:PRINT ADS$;

95

96

330
400
410
420
430

440

450
460
4,0
480
430
5009
519
520

"330

5409
550
560
370
380
530

600
610

629
630
640
638
6609
676
689
63909
/809
/16
720

AX=AX+1 : [FAXD 33THENAX=26 :AY=AY+]
IF AY>11 THEN AY=4

NEXT :NEXT

GOSUB 28@:AA$=""

FOR BA=1T08:BB$=HEX$(BD(BAJ):IF
LEN(BB$)<2 THEN BB$="0"+BB$
AA$=AAS$+BBS$:NEXT :PATTERNCH&HDZ . AAS$

B2=0:BS=1:FOR MA=2TOLENCAA$ISTEP?2
BR$=MID$ (AAS,MA, 1)

IF BR$="A" THEN BR$="10"

IF BR$="B" THEN BR$="11"

IF BR$="C" THEN BRs$="12"

IF BR$="D" THEN BR$="13"

IF BR$="E" THEN BRs$="14"

IF BR$="F" THEN BR$="13"
BZ=UAL(BR$) :BT(BSJ)=BZ AND 3
BS=BS+1:NEXT MA

AZ$="":FOR BA=1 TO 8:BZ=BT(BA)
IF BZ=] THEN BZ=4

IF B2=2 THEN BZ=8

IF B2=3 THEN BZ=12
BR$=HEX$(B2) :IF LEN(BR$)<2 THEN
BR$=BR$+"0" :AZ2$=A2$+BR$:NEXT
PATTERNCH&HD4,R2%$

CURSOR 28, 18:PRINT CHR$(&HD2);:
PRINTCHRS$ (&HD4)

RETURN

REM Determine Ualue per rouw

IF PT(BX,BY}>32 THEN BA=BA+128
IF PT(BX+2,BYJ>32 THEN BA=BA+64
IF PT(BX+4,BY)>32 THEN BA=BA+32
IF PT(BXt6,BY)>32 THEN BA=BA+16
IF PT(BX+8,BY)>32 THEN BA=BA+8
IF PT(BX+10,BY)>32 THEN BA=BA+4
IF PT(BX+12,BY)>32 THEN BA=BA+2
IF PT(BX+14,BY)>32 THEN BA=BA+]
RETURN

730
740
250
/60
278
/80
730
800
310
820
830
840
8350
8609
370
880
890
8009
910
920

REM clear array

PRINT" 1 2 34 56 2 8"
PRINT" —————mmmmo o "
PRINT"1: + t © 1 & 1
PRINT"

PRINT" 21

PRINT"

PRINT" 3!

PRINT" |

PRINT"4! 1+ 1+ © 1+ 1 &+ |

PRINT"
PRINT"S
PRINT"
PRINT"6
PRINT"
PRINT"?
PRINT" {=mmmmmm—mmmmm e
PRINT"81 ¢ ¢ & 1 1 & !
PRINT" mmmmmmmm oo "
RE TURN

97

	SC3000 Programmers Manual00
	SC3000 Programmers Manual01
	SC3000 Programmers Manual02
	SC3000 Programmers Manual03
	SC3000 Programmers Manual04
	SC3000 Programmers Manual05
	SC3000 Programmers Manual06
	SC3000 Programmers Manual07
	SC3000 Programmers Manual08
	SC3000 Programmers Manual09
	SC3000 Programmers Manual10
	SC3000 Programmers Manual11
	SC3000 Programmers Manual12
	SC3000 Programmers Manual13
	SC3000 Programmers Manual14
	SC3000 Programmers Manual15
	SC3000 Programmers Manual16
	SC3000 Programmers Manual17
	SC3000 Programmers Manual18
	SC3000 Programmers Manual19
	SC3000 Programmers Manual20
	SC3000 Programmers Manual21
	SC3000 Programmers Manual22
	SC3000 Programmers Manual23
	SC3000 Programmers Manual24
	SC3000 Programmers Manual25
	SC3000 Programmers Manual26
	SC3000 Programmers Manual27
	SC3000 Programmers Manual28
	SC3000 Programmers Manual29
	SC3000 Programmers Manual30
	SC3000 Programmers Manual31
	SC3000 Programmers Manual32
	SC3000 Programmers Manual33
	SC3000 Programmers Manual34
	SC3000 Programmers Manual35
	SC3000 Programmers Manual36
	SC3000 Programmers Manual37
	SC3000 Programmers Manual38
	SC3000 Programmers Manual39
	SC3000 Programmers Manual40
	SC3000 Programmers Manual41
	SC3000 Programmers Manual42
	SC3000 Programmers Manual43
	SC3000 Programmers Manual44
	SC3000 Programmers Manual45
	SC3000 Programmers Manual46
	SC3000 Programmers Manual47
	SC3000 Programmers Manual48
	SC3000 Programmers Manual49
	SC3000 Programmers Manual50
	SC3000 Programmers Manual51
	SC3000 Programmers Manual52
	SC3000 Programmers Manual53
	SC3000 Programmers Manual54
	SC3000 Programmers Manual55
	SC3000 Programmers Manual56
	SC3000 Programmers Manual57
	SC3000 Programmers Manual58
	SC3000 Programmers Manual59
	SC3000 Programmers Manual60
	SC3000 Programmers Manual61
	SC3000 Programmers Manual62
	SC3000 Programmers Manual63
	SC3000 Programmers Manual64
	SC3000 Programmers Manual65
	SC3000 Programmers Manual66
	SC3000 Programmers Manual67
	SC3000 Programmers Manual68
	SC3000 Programmers Manual69
	SC3000 Programmers Manual70
	SC3000 Programmers Manual71
	SC3000 Programmers Manual72
	SC3000 Programmers Manual73
	SC3000 Programmers Manual74
	SC3000 Programmers Manual75
	SC3000 Programmers Manual76
	SC3000 Programmers Manual77
	SC3000 Programmers Manual78
	SC3000 Programmers Manual79
	SC3000 Programmers Manual80
	SC3000 Programmers Manual81
	SC3000 Programmers Manual82
	SC3000 Programmers Manual83
	SC3000 Programmers Manual84
	SC3000 Programmers Manual85
	SC3000 Programmers Manual86
	SC3000 Programmers Manual87
	SC3000 Programmers Manual88
	SC3000 Programmers Manual89
	SC3000 Programmers Manual90
	SC3000 Programmers Manual91
	SC3000 Programmers Manual92
	SC3000 Programmers Manual93
	SC3000 Programmers Manual94
	SC3000 Programmers Manual95
	SC3000 Programmers Manual96
	SC3000 Programmers Manual97
	SC3000 Programmers Manual98

